Loading…
Extension of Euler's theorem to n-dimensional spaces
Euler's theorem states that any sequence of finite rotations of a rigid body can be described as a single rotation of the body about a fixed axis in three-dimensional Euclidean space. The usual statement of the theorem in the literature cannot be extended to Euclidean spaces of other dimensions...
Saved in:
Published in: | IEEE transactions on aerospace and electronic systems 1989-11, Vol.25 (6), p.903-909 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c268t-86989fade60d2ec849e7d1759da07e2a20b47949309a8bd5277692e49f1531c63 |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-86989fade60d2ec849e7d1759da07e2a20b47949309a8bd5277692e49f1531c63 |
container_end_page | 909 |
container_issue | 6 |
container_start_page | 903 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 25 |
creator | Bar-Itzhack, I.Y. |
description | Euler's theorem states that any sequence of finite rotations of a rigid body can be described as a single rotation of the body about a fixed axis in three-dimensional Euclidean space. The usual statement of the theorem in the literature cannot be extended to Euclidean spaces of other dimensions. Equivalent formulations of the theorem are given and proved in a way which does not limit them to the three-dimensional Euclidean space. Thus, the equivalent theorems hold in other dimensions. The proof of one formulation presents an algorithm which shows how to compute an angular-difference matrix that represents a single rotation which is equivalent to the sequence of rotations that have generated the final n-D orientation. This algorithm results also in a constant angular velocity which, when applied to the initial orientation, eventually yields the final orientation regardless of what angular velocity generated the latter. The extension of the theorem is demonstrated in a four-dimensional numerical example. The issue of the correct n-D representation of angular velocity is discussed.< > |
doi_str_mv | 10.1109/7.40731 |
format | article |
fullrecord | <record><control><sourceid>proquest_nasa_</sourceid><recordid>TN_cdi_proquest_miscellaneous_25571958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>40731</ieee_id><sourcerecordid>25559020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-86989fade60d2ec849e7d1759da07e2a20b47949309a8bd5277692e49f1531c63</originalsourceid><addsrcrecordid>eNqN0EtLw0AQAOBFFKxVPAsechB7St1nducopT6g4EXPy3YzwUia1J0U9N8bTenZ0zDMNzPMMHYp-FwIDnd2rrlV4ohNhDE2h4KrYzbhXLgcpBGn7IzoY0i102rC9PKrx5bqrs26KlvuGkwzyvp37BJusr7L2rysN6MITUbbEJHO2UkVGsKLfZyyt4fl6-IpX708Pi_uV3mUhetzV4CDKpRY8FJidBrQlsIaKAO3KIPka21Bg-IQ3Lo00toCJGqohFEiFmrKbse529R97pB6v6kpYtOEFrsdeTkcKMC4_0ADXPIBzkYYU0eUsPLbVG9C-vaC-9_3eev_3jfIm_3IQDE0VQptrOnAC6uFUzCw65G1gYJv-0ReAHDOldFaD-WrsVwj4qF53PADtyh8pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25559020</pqid></control><display><type>article</type><title>Extension of Euler's theorem to n-dimensional spaces</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bar-Itzhack, I.Y.</creator><creatorcontrib>Bar-Itzhack, I.Y.</creatorcontrib><description>Euler's theorem states that any sequence of finite rotations of a rigid body can be described as a single rotation of the body about a fixed axis in three-dimensional Euclidean space. The usual statement of the theorem in the literature cannot be extended to Euclidean spaces of other dimensions. Equivalent formulations of the theorem are given and proved in a way which does not limit them to the three-dimensional Euclidean space. Thus, the equivalent theorems hold in other dimensions. The proof of one formulation presents an algorithm which shows how to compute an angular-difference matrix that represents a single rotation which is equivalent to the sequence of rotations that have generated the final n-D orientation. This algorithm results also in a constant angular velocity which, when applied to the initial orientation, eventually yields the final orientation regardless of what angular velocity generated the latter. The extension of the theorem is demonstrated in a four-dimensional numerical example. The issue of the correct n-D representation of angular velocity is discussed.< ></description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/7.40731</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>Legacy CDMS: IEEE</publisher><subject>Angular velocity ; Councils ; Equations ; Exact sciences and technology ; Geometry, differential geometry, and topology ; Mathematical methods in physics ; Modems ; NASA ; Numerical Analysis ; Physics ; Position measurement</subject><ispartof>IEEE transactions on aerospace and electronic systems, 1989-11, Vol.25 (6), p.903-909</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-86989fade60d2ec849e7d1759da07e2a20b47949309a8bd5277692e49f1531c63</citedby><cites>FETCH-LOGICAL-c268t-86989fade60d2ec849e7d1759da07e2a20b47949309a8bd5277692e49f1531c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/40731$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6741839$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bar-Itzhack, I.Y.</creatorcontrib><title>Extension of Euler's theorem to n-dimensional spaces</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Euler's theorem states that any sequence of finite rotations of a rigid body can be described as a single rotation of the body about a fixed axis in three-dimensional Euclidean space. The usual statement of the theorem in the literature cannot be extended to Euclidean spaces of other dimensions. Equivalent formulations of the theorem are given and proved in a way which does not limit them to the three-dimensional Euclidean space. Thus, the equivalent theorems hold in other dimensions. The proof of one formulation presents an algorithm which shows how to compute an angular-difference matrix that represents a single rotation which is equivalent to the sequence of rotations that have generated the final n-D orientation. This algorithm results also in a constant angular velocity which, when applied to the initial orientation, eventually yields the final orientation regardless of what angular velocity generated the latter. The extension of the theorem is demonstrated in a four-dimensional numerical example. The issue of the correct n-D representation of angular velocity is discussed.< ></description><subject>Angular velocity</subject><subject>Councils</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Geometry, differential geometry, and topology</subject><subject>Mathematical methods in physics</subject><subject>Modems</subject><subject>NASA</subject><subject>Numerical Analysis</subject><subject>Physics</subject><subject>Position measurement</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqN0EtLw0AQAOBFFKxVPAsechB7St1nducopT6g4EXPy3YzwUia1J0U9N8bTenZ0zDMNzPMMHYp-FwIDnd2rrlV4ohNhDE2h4KrYzbhXLgcpBGn7IzoY0i102rC9PKrx5bqrs26KlvuGkwzyvp37BJusr7L2rysN6MITUbbEJHO2UkVGsKLfZyyt4fl6-IpX708Pi_uV3mUhetzV4CDKpRY8FJidBrQlsIaKAO3KIPka21Bg-IQ3Lo00toCJGqohFEiFmrKbse529R97pB6v6kpYtOEFrsdeTkcKMC4_0ADXPIBzkYYU0eUsPLbVG9C-vaC-9_3eev_3jfIm_3IQDE0VQptrOnAC6uFUzCw65G1gYJv-0ReAHDOldFaD-WrsVwj4qF53PADtyh8pA</recordid><startdate>19891101</startdate><enddate>19891101</enddate><creator>Bar-Itzhack, I.Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope></search><sort><creationdate>19891101</creationdate><title>Extension of Euler's theorem to n-dimensional spaces</title><author>Bar-Itzhack, I.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-86989fade60d2ec849e7d1759da07e2a20b47949309a8bd5277692e49f1531c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Angular velocity</topic><topic>Councils</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Geometry, differential geometry, and topology</topic><topic>Mathematical methods in physics</topic><topic>Modems</topic><topic>NASA</topic><topic>Numerical Analysis</topic><topic>Physics</topic><topic>Position measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bar-Itzhack, I.Y.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bar-Itzhack, I.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of Euler's theorem to n-dimensional spaces</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>1989-11-01</date><risdate>1989</risdate><volume>25</volume><issue>6</issue><spage>903</spage><epage>909</epage><pages>903-909</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Euler's theorem states that any sequence of finite rotations of a rigid body can be described as a single rotation of the body about a fixed axis in three-dimensional Euclidean space. The usual statement of the theorem in the literature cannot be extended to Euclidean spaces of other dimensions. Equivalent formulations of the theorem are given and proved in a way which does not limit them to the three-dimensional Euclidean space. Thus, the equivalent theorems hold in other dimensions. The proof of one formulation presents an algorithm which shows how to compute an angular-difference matrix that represents a single rotation which is equivalent to the sequence of rotations that have generated the final n-D orientation. This algorithm results also in a constant angular velocity which, when applied to the initial orientation, eventually yields the final orientation regardless of what angular velocity generated the latter. The extension of the theorem is demonstrated in a four-dimensional numerical example. The issue of the correct n-D representation of angular velocity is discussed.< ></abstract><cop>Legacy CDMS</cop><pub>IEEE</pub><doi>10.1109/7.40731</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 1989-11, Vol.25 (6), p.903-909 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_proquest_miscellaneous_25571958 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Angular velocity Councils Equations Exact sciences and technology Geometry, differential geometry, and topology Mathematical methods in physics Modems NASA Numerical Analysis Physics Position measurement |
title | Extension of Euler's theorem to n-dimensional spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A34%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nasa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20Euler's%20theorem%20to%20n-dimensional%20spaces&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Bar-Itzhack,%20I.Y.&rft.date=1989-11-01&rft.volume=25&rft.issue=6&rft.spage=903&rft.epage=909&rft.pages=903-909&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/7.40731&rft_dat=%3Cproquest_nasa_%3E25559020%3C/proquest_nasa_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-86989fade60d2ec849e7d1759da07e2a20b47949309a8bd5277692e49f1531c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25559020&rft_id=info:pmid/&rft_ieee_id=40731&rfr_iscdi=true |