Loading…

Extension of Euler's theorem to n-dimensional spaces

Euler's theorem states that any sequence of finite rotations of a rigid body can be described as a single rotation of the body about a fixed axis in three-dimensional Euclidean space. The usual statement of the theorem in the literature cannot be extended to Euclidean spaces of other dimensions...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems 1989-11, Vol.25 (6), p.903-909
Main Author: Bar-Itzhack, I.Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c268t-86989fade60d2ec849e7d1759da07e2a20b47949309a8bd5277692e49f1531c63
cites cdi_FETCH-LOGICAL-c268t-86989fade60d2ec849e7d1759da07e2a20b47949309a8bd5277692e49f1531c63
container_end_page 909
container_issue 6
container_start_page 903
container_title IEEE transactions on aerospace and electronic systems
container_volume 25
creator Bar-Itzhack, I.Y.
description Euler's theorem states that any sequence of finite rotations of a rigid body can be described as a single rotation of the body about a fixed axis in three-dimensional Euclidean space. The usual statement of the theorem in the literature cannot be extended to Euclidean spaces of other dimensions. Equivalent formulations of the theorem are given and proved in a way which does not limit them to the three-dimensional Euclidean space. Thus, the equivalent theorems hold in other dimensions. The proof of one formulation presents an algorithm which shows how to compute an angular-difference matrix that represents a single rotation which is equivalent to the sequence of rotations that have generated the final n-D orientation. This algorithm results also in a constant angular velocity which, when applied to the initial orientation, eventually yields the final orientation regardless of what angular velocity generated the latter. The extension of the theorem is demonstrated in a four-dimensional numerical example. The issue of the correct n-D representation of angular velocity is discussed.< >
doi_str_mv 10.1109/7.40731
format article
fullrecord <record><control><sourceid>proquest_nasa_</sourceid><recordid>TN_cdi_proquest_miscellaneous_25571958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>40731</ieee_id><sourcerecordid>25559020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-86989fade60d2ec849e7d1759da07e2a20b47949309a8bd5277692e49f1531c63</originalsourceid><addsrcrecordid>eNqN0EtLw0AQAOBFFKxVPAsechB7St1nducopT6g4EXPy3YzwUia1J0U9N8bTenZ0zDMNzPMMHYp-FwIDnd2rrlV4ohNhDE2h4KrYzbhXLgcpBGn7IzoY0i102rC9PKrx5bqrs26KlvuGkwzyvp37BJusr7L2rysN6MITUbbEJHO2UkVGsKLfZyyt4fl6-IpX708Pi_uV3mUhetzV4CDKpRY8FJidBrQlsIaKAO3KIPka21Bg-IQ3Lo00toCJGqohFEiFmrKbse529R97pB6v6kpYtOEFrsdeTkcKMC4_0ADXPIBzkYYU0eUsPLbVG9C-vaC-9_3eev_3jfIm_3IQDE0VQptrOnAC6uFUzCw65G1gYJv-0ReAHDOldFaD-WrsVwj4qF53PADtyh8pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25559020</pqid></control><display><type>article</type><title>Extension of Euler's theorem to n-dimensional spaces</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bar-Itzhack, I.Y.</creator><creatorcontrib>Bar-Itzhack, I.Y.</creatorcontrib><description>Euler's theorem states that any sequence of finite rotations of a rigid body can be described as a single rotation of the body about a fixed axis in three-dimensional Euclidean space. The usual statement of the theorem in the literature cannot be extended to Euclidean spaces of other dimensions. Equivalent formulations of the theorem are given and proved in a way which does not limit them to the three-dimensional Euclidean space. Thus, the equivalent theorems hold in other dimensions. The proof of one formulation presents an algorithm which shows how to compute an angular-difference matrix that represents a single rotation which is equivalent to the sequence of rotations that have generated the final n-D orientation. This algorithm results also in a constant angular velocity which, when applied to the initial orientation, eventually yields the final orientation regardless of what angular velocity generated the latter. The extension of the theorem is demonstrated in a four-dimensional numerical example. The issue of the correct n-D representation of angular velocity is discussed.&lt; &gt;</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/7.40731</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>Legacy CDMS: IEEE</publisher><subject>Angular velocity ; Councils ; Equations ; Exact sciences and technology ; Geometry, differential geometry, and topology ; Mathematical methods in physics ; Modems ; NASA ; Numerical Analysis ; Physics ; Position measurement</subject><ispartof>IEEE transactions on aerospace and electronic systems, 1989-11, Vol.25 (6), p.903-909</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-86989fade60d2ec849e7d1759da07e2a20b47949309a8bd5277692e49f1531c63</citedby><cites>FETCH-LOGICAL-c268t-86989fade60d2ec849e7d1759da07e2a20b47949309a8bd5277692e49f1531c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/40731$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6741839$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bar-Itzhack, I.Y.</creatorcontrib><title>Extension of Euler's theorem to n-dimensional spaces</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Euler's theorem states that any sequence of finite rotations of a rigid body can be described as a single rotation of the body about a fixed axis in three-dimensional Euclidean space. The usual statement of the theorem in the literature cannot be extended to Euclidean spaces of other dimensions. Equivalent formulations of the theorem are given and proved in a way which does not limit them to the three-dimensional Euclidean space. Thus, the equivalent theorems hold in other dimensions. The proof of one formulation presents an algorithm which shows how to compute an angular-difference matrix that represents a single rotation which is equivalent to the sequence of rotations that have generated the final n-D orientation. This algorithm results also in a constant angular velocity which, when applied to the initial orientation, eventually yields the final orientation regardless of what angular velocity generated the latter. The extension of the theorem is demonstrated in a four-dimensional numerical example. The issue of the correct n-D representation of angular velocity is discussed.&lt; &gt;</description><subject>Angular velocity</subject><subject>Councils</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Geometry, differential geometry, and topology</subject><subject>Mathematical methods in physics</subject><subject>Modems</subject><subject>NASA</subject><subject>Numerical Analysis</subject><subject>Physics</subject><subject>Position measurement</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqN0EtLw0AQAOBFFKxVPAsechB7St1nducopT6g4EXPy3YzwUia1J0U9N8bTenZ0zDMNzPMMHYp-FwIDnd2rrlV4ohNhDE2h4KrYzbhXLgcpBGn7IzoY0i102rC9PKrx5bqrs26KlvuGkwzyvp37BJusr7L2rysN6MITUbbEJHO2UkVGsKLfZyyt4fl6-IpX708Pi_uV3mUhetzV4CDKpRY8FJidBrQlsIaKAO3KIPka21Bg-IQ3Lo00toCJGqohFEiFmrKbse529R97pB6v6kpYtOEFrsdeTkcKMC4_0ADXPIBzkYYU0eUsPLbVG9C-vaC-9_3eev_3jfIm_3IQDE0VQptrOnAC6uFUzCw65G1gYJv-0ReAHDOldFaD-WrsVwj4qF53PADtyh8pA</recordid><startdate>19891101</startdate><enddate>19891101</enddate><creator>Bar-Itzhack, I.Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope></search><sort><creationdate>19891101</creationdate><title>Extension of Euler's theorem to n-dimensional spaces</title><author>Bar-Itzhack, I.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-86989fade60d2ec849e7d1759da07e2a20b47949309a8bd5277692e49f1531c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Angular velocity</topic><topic>Councils</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Geometry, differential geometry, and topology</topic><topic>Mathematical methods in physics</topic><topic>Modems</topic><topic>NASA</topic><topic>Numerical Analysis</topic><topic>Physics</topic><topic>Position measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bar-Itzhack, I.Y.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bar-Itzhack, I.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of Euler's theorem to n-dimensional spaces</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>1989-11-01</date><risdate>1989</risdate><volume>25</volume><issue>6</issue><spage>903</spage><epage>909</epage><pages>903-909</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Euler's theorem states that any sequence of finite rotations of a rigid body can be described as a single rotation of the body about a fixed axis in three-dimensional Euclidean space. The usual statement of the theorem in the literature cannot be extended to Euclidean spaces of other dimensions. Equivalent formulations of the theorem are given and proved in a way which does not limit them to the three-dimensional Euclidean space. Thus, the equivalent theorems hold in other dimensions. The proof of one formulation presents an algorithm which shows how to compute an angular-difference matrix that represents a single rotation which is equivalent to the sequence of rotations that have generated the final n-D orientation. This algorithm results also in a constant angular velocity which, when applied to the initial orientation, eventually yields the final orientation regardless of what angular velocity generated the latter. The extension of the theorem is demonstrated in a four-dimensional numerical example. The issue of the correct n-D representation of angular velocity is discussed.&lt; &gt;</abstract><cop>Legacy CDMS</cop><pub>IEEE</pub><doi>10.1109/7.40731</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 1989-11, Vol.25 (6), p.903-909
issn 0018-9251
1557-9603
language eng
recordid cdi_proquest_miscellaneous_25571958
source IEEE Electronic Library (IEL) Journals
subjects Angular velocity
Councils
Equations
Exact sciences and technology
Geometry, differential geometry, and topology
Mathematical methods in physics
Modems
NASA
Numerical Analysis
Physics
Position measurement
title Extension of Euler's theorem to n-dimensional spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A34%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nasa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20Euler's%20theorem%20to%20n-dimensional%20spaces&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Bar-Itzhack,%20I.Y.&rft.date=1989-11-01&rft.volume=25&rft.issue=6&rft.spage=903&rft.epage=909&rft.pages=903-909&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/7.40731&rft_dat=%3Cproquest_nasa_%3E25559020%3C/proquest_nasa_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-86989fade60d2ec849e7d1759da07e2a20b47949309a8bd5277692e49f1531c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25559020&rft_id=info:pmid/&rft_ieee_id=40731&rfr_iscdi=true