Loading…

Prediction of Potential MicroRNA–Disease Association Using Kernelized Bayesian Matrix Factorization

MicroRNA (miRNA) molecules, which are effective in the formation and progression of many different diseases, are 18–22 nucleotides in length and make up a type of non-coding RNA. Predicting disease-related microRNAs is crucial for understanding the pathogenesis of disease and for diagnosis, treatmen...

Full description

Saved in:
Bibliographic Details
Published in:Interdisciplinary sciences : computational life sciences 2021-12, Vol.13 (4), p.595-602
Main Authors: Toprak, Ahmet, Eryilmaz Dogan, Esma
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:MicroRNA (miRNA) molecules, which are effective in the formation and progression of many different diseases, are 18–22 nucleotides in length and make up a type of non-coding RNA. Predicting disease-related microRNAs is crucial for understanding the pathogenesis of disease and for diagnosis, treatment, and prevention of diseases. Many computational techniques have been studied and developed, as the experimental techniques used to find novel miRNA–disease associations in biology are costly. In this paper, a Kernelized Bayesian Matrix Factorization (KBMF) technique was suggested to predict new relations among miRNAs and diseases with several information such as miRNA functional similarity, disease semantic similarity, and known relations among miRNAs and diseases. AUC value of 0.9450 was obtained by implementing fivefold cross-validation for KBMF technique. We also carried out three kinds of case studies (breast, lung, and colon neoplasms) to prove the performance of KBMF technique, and the predictive reliability of this method was confirmed by the results. Thus, KBMF technique can be used as a reliable computational model to infer possible miRNA–disease associations.
ISSN:1913-2751
1867-1462
DOI:10.1007/s12539-021-00469-w