Loading…
Development and in vitro-in vivo performances of an inhalable indole-3-carboxaldehyde dry powder to target pulmonary inflammation and infection
[Display omitted] A tryptophan metabolite of microbial origin, indole-3-carboxaldehyde (3-IAld), has been recently identified as a Janus molecule that, acting at the host-pathogen interface and activating the aryl hydrocarbon receptor, can result as a potential candidate to treat infections as well...
Saved in:
Published in: | International journal of pharmaceutics 2021-09, Vol.607, p.121004-121004, Article 121004 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
A tryptophan metabolite of microbial origin, indole-3-carboxaldehyde (3-IAld), has been recently identified as a Janus molecule that, acting at the host-pathogen interface and activating the aryl hydrocarbon receptor, can result as a potential candidate to treat infections as well as diseases with an inflammatory and/or immune component. In this work, an inhaled dry powder of 3-IAld was developed and evaluated for its efficacy, compared to oral and intranasal administration using an aspergillosis model of infection and inflammation. The obtained inhalable dry powder was shown to: i) be suitable to be delivered for pulmonary administration, ii) possess good toxicological safety, and iii) be superior to other administration modalities (oral and intranasal) in reducing disease scores by acting on infection and inflammation. This study supports the use of 3-IAld inhalable dry powders as a potential novel therapeutic tool to target inflammation and infection in pulmonary diseases. |
---|---|
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2021.121004 |