Loading…

De novo generation of dual-target ligands using adversarial training and reinforcement learning

Artificial intelligence, such as deep generative methods, represents a promising solution to de novo design of molecules with the desired properties. However, generating new molecules with biological activities toward two specific targets remains an extremely difficult challenge. In this work, we co...

Full description

Saved in:
Bibliographic Details
Published in:Briefings in bioinformatics 2021-11, Vol.22 (6)
Main Authors: Lu, Fengqing, Li, Mufei, Min, Xiaoping, Li, Chunyan, Zeng, Xiangxiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Artificial intelligence, such as deep generative methods, represents a promising solution to de novo design of molecules with the desired properties. However, generating new molecules with biological activities toward two specific targets remains an extremely difficult challenge. In this work, we conceive a novel computational framework, herein called dual-target ligand generative network (DLGN), for the de novo generation of bioactive molecules toward two given objectives. Via adversarial training and reinforcement learning, DLGN treats a sequence-based simplified molecular input line entry system (SMILES) generator as a stochastic policy for exploring chemical spaces. Two discriminators are then used to encourage the generation of molecules that belong to the intersection of two bioactive-compound distributions. In a case study, we employ our methods to design a library of dual-target ligands targeting dopamine receptor D2 and 5-hydroxytryptamine receptor 1A as new antipsychotics. Experimental results demonstrate that the proposed model can generate novel compounds with high similarity to both bioactive datasets in several structure-based metrics. Our model exhibits a performance comparable to that of various state-of-the-art multi-objective molecule generation models. We envision that this framework will become a generally applicable approach for designing dual-target drugs in silico.
ISSN:1467-5463
1477-4054
DOI:10.1093/bib/bbab333