Loading…
Supermodeling in predictive diagnostics of cancer under treatment
Classical data assimilation (DA) techniques, synchronizing a computer model with observations, are highly demanding computationally, particularly, for complex over-parametrized cancer models. Consequently, current models are not sufficiently flexible to interactively explore various therapy strategi...
Saved in:
Published in: | Computers in biology and medicine 2021-10, Vol.137, p.104797-104797, Article 104797 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Classical data assimilation (DA) techniques, synchronizing a computer model with observations, are highly demanding computationally, particularly, for complex over-parametrized cancer models. Consequently, current models are not sufficiently flexible to interactively explore various therapy strategies, and to become a key tool of predictive oncology. We show that, by using supermodeling, it is possible to develop a prediction/correction scheme that could attain the required time regimes and be directly used to support decision-making in anticancer therapies. A supermodel is an interconnected ensemble of individual models (sub-models); in this case, the variously parametrized baseline tumor models. The sub-model connection weights are trained from data, thereby incorporating the advantages of the individual models. Simultaneously, by optimizing the strengths of the connections, the sub-models tend to partially synchronize with one another. As a result, during the evolution of the supermodel, the systematic errors of the individual models partially cancel each other. We find that supermodeling allows for a radical increase in the accuracy and efficiency of data assimilation. We demonstrate that it can be considered as a meta-procedure for any classical parameter fitting algorithm, thus it represents the next – latent – level of abstraction of data assimilation. We conclude that supermodeling is a very promising paradigm that can considerably increase the quality of prognosis in predictive oncology.
[Display omitted]
•A supermodel is an ensemble of synchronized imperfect computer models of a complex system such as a tumor.•It allows for fast data assimilation and parameters fitting in an overparametrized tumor model.•The supermodel clearly improves the quality of the predictions.•It is an excellent computational framework for planning anti-cancer therapy. |
---|---|
ISSN: | 0010-4825 1879-0534 |
DOI: | 10.1016/j.compbiomed.2021.104797 |