Loading…

Machine learning with a reduced dimensionality representation of comprehensive Pentacam tomography parameters to identify subclinical keratoconus

To investigate the performance of a machine learning model based on a reduced dimensionality parameter space derived from complete Pentacam parameters to identify subclinical keratoconus (KC). All 1692 available parameters were obtained from the Pentacam imaging machine on 145 subclinical KC and 122...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine 2021-11, Vol.138, p.104884-104884, Article 104884
Main Authors: Cao, Ke, Verspoor, Karin, Chan, Elsie, Daniell, Mark, Sahebjada, Srujana, Baird, Paul N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To investigate the performance of a machine learning model based on a reduced dimensionality parameter space derived from complete Pentacam parameters to identify subclinical keratoconus (KC). All 1692 available parameters were obtained from the Pentacam imaging machine on 145 subclinical KC and 122 control eyes. We applied a principal component analysis (PCA) to the complete Pentacam dataset to reduce its parameter dimensionality. Subsequently, we investigated machine learning performance of the random forest algorithm with increasing numbers of components to identify their optimal number for detecting subclinical KC from control eyes. The dimensionality of the complete set of 1692 Pentacam parameters was reduced to 267 principal components using PCA. Subsequent selection of 15 of these principal components explained over 85% of the variance of the original Pentacam-derived parameters and input to train a random forest machine learning model to achieve the best accuracy of 98% in detecting subclinical KC eyes. The model established also reached a high sensitivity of 97% in identification of subclinical KC and a specificity of 98% in recognizing control eyes. A random forest-based model trained using a modest number of components derived from a reduced dimensionality representation of complete Pentacam system parameters allowed for high accuracy of subclinical KC identification. •A high-performance automated model is built for detecting subclinical keratoconus (KC).•The model is developed using a comprehensive set of Pentacam tomography parameters.•Dimensionality reduction is applied to alleviate high dimensionality issues.•We compared different models and obtained the best one with an accuracy of 0.98.
ISSN:0010-4825
1879-0534
DOI:10.1016/j.compbiomed.2021.104884