Loading…

Extending the Legible Time of Light-Responsive Rewritable Papers with a Tunable Photochromic Diarylethene Molecule

Inkless printing based on rewritable papers has recently made great progress because it can improve the utilization rate of papers, which is of great significance for saving resources and protecting the environment. Among them, light-responsive rewritable papers (LRPs) are a hot research topic becau...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2021-11, Vol.13 (43), p.51414-51425
Main Authors: Tang, Shanliang, An, Jing, Song, Fengling, Lv, Meiheng, Han, Keli, Peng, Xiaojun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inkless printing based on rewritable papers has recently made great progress because it can improve the utilization rate of papers, which is of great significance for saving resources and protecting the environment. Among them, light-responsive rewritable papers (LRPs) are a hot research topic because light is clean, easily available, wavelength and intensity adjustable, and noncontacting. However, the photochromic material, as the imaging substance of LRPs, is easily affected by environmental conditions, resulting in insufficient time to read the information. In view of this, we designed and constructed an acid/base tunable diarylethene molecular system that can effectively adjust the photochromic properties by reversibly changing the electron density of the diarylethene photoreaction center through protonation and demonstrated its potential as an imaging material with a longer legible time. What makes us more satisfied is that the acidification can not only extend the legible time of carrying information but also bring a clear and stable absorption/fluorescence imaging dual mode, which can better reflect details and improve contrast. Therefore, we believe that this tunable photochromic diarylethene molecule is a potential imaging material for the development of new LRPs.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c11841