Loading…

The regulation of DKGA2ox1 and miR171f_3 in scion dwarfing with Diospyros kaki Thunb. cv. ‘Nan-tong-xiao-fang-shi’ as interstocks

Diospyros kaki Thunb. cv. Nan-tong-xiao-fang-shi (‘Nan-tong-xiao-fang-shi’) interstocks play a critical role in the scion dwarfing. However, the understanding of the molecular signaling pathways that regulate the scion dwarfing with ‘Nantong- xiao-fang-shi’ as interstocks remain unclear. In this wor...

Full description

Saved in:
Bibliographic Details
Published in:Planta 2021-12, Vol.254 (6), p.1-12, Article 113
Main Authors: Dong, Yuhan, Ye, Xialin, Cao, Lifang, Yu, Xinyi, Qu, Shenchun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-6a625cc2bb8a4fd6ef581e6e84e85b299fbba5868a91a26cfa81afef82ddef9b3
cites cdi_FETCH-LOGICAL-c397t-6a625cc2bb8a4fd6ef581e6e84e85b299fbba5868a91a26cfa81afef82ddef9b3
container_end_page 12
container_issue 6
container_start_page 1
container_title Planta
container_volume 254
creator Dong, Yuhan
Ye, Xialin
Cao, Lifang
Yu, Xinyi
Qu, Shenchun
description Diospyros kaki Thunb. cv. Nan-tong-xiao-fang-shi (‘Nan-tong-xiao-fang-shi’) interstocks play a critical role in the scion dwarfing. However, the understanding of the molecular signaling pathways that regulate the scion dwarfing with ‘Nantong- xiao-fang-shi’ as interstocks remain unclear. In this work, the regulatory network in the scion dwarfing with ‘Nan-tongxiao- fang-shi’ as interstocks was identified. Using a yeast one-hybrid library screening, luciferase activity analysis, luciferase complementation imaging assays and GFP signal detection, a SPL transcription factor named Diospyros kaki SPL (DKSPL), potentially functioning as a transcriptional activator of the Diospyros kaki GA2ox1 (DKGA2ox1) gene, was identified as a key stimulating factor in the persimmon growth and development. The DKSPL was found in the nucleus, and might play a role in the transcriptional regulation system. A microRNA named miR171f_3 was identified, which might act as a negative regulator of Diospyros kaki SCR (DKSCR) in persimmon. The interactions between DKSCR and seven proteins were experimentally validated with a yeast two-hybrid library screening. Compared to the non-grafted wildtype persimmon, the tissue section of graft union healed well due to the increased expression of cinnamyl-alcohol dehydrogenase. These results indicate that DKGA2ox1 and miR171f_3 may co-promote the scion dwarfing by plant hormone signal transduction pathways.
doi_str_mv 10.1007/s00425-021-03765-3
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2594297024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27294849</jstor_id><sourcerecordid>27294849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-6a625cc2bb8a4fd6ef581e6e84e85b299fbba5868a91a26cfa81afef82ddef9b3</originalsourceid><addsrcrecordid>eNp9kU1uFDEQhS0EIkPgAkggS9mw8cR_3baXUQJJlChIaFhb7m57xvNjD3Y3SXbZcAe4Xk4SDx2CxIJVlVTfe1WqB8BbgqcEY3GYMea0QpgShJmoK8SegQnhjCKKuXwOJhiXHitW7YFXOS8xLkMhXoI9xgVTNSYT8GO2sDDZ-bA2vY8BRgdPLk6PaLwh0IQObvwXIojTDPoAc7tDumuTnA9zeO37BTzxMW9vU8xwZVYezhZDaKaw_T6F93c_r0xAfQxzdONNRM6ULi_8_d0vaHIx7G3KfWxX-TV44cw62zePdR98_fRxdnyGLj-fnh8fXaKWKdGj2tS0alvaNNJw19XWVZLY2kpuZdVQpVzTmErW0ihiaN06I4lx1knaddaphu2DD6PvNsVvg8293vjc2vXaBBuHrGmlOFUCU17Qg3_QZRxSKNftKCZ4LQQrFB2ptnwgJ-v0NvmNSbeaYL0LSY8h6RKS_h2S3oneP1oPzcZ2T5I_qRSAjUAuozC36e_u_9q-G1XL8tT05EoFVVxyxR4Aa5aoPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593746773</pqid></control><display><type>article</type><title>The regulation of DKGA2ox1 and miR171f_3 in scion dwarfing with Diospyros kaki Thunb. cv. ‘Nan-tong-xiao-fang-shi’ as interstocks</title><source>Springer Nature</source><creator>Dong, Yuhan ; Ye, Xialin ; Cao, Lifang ; Yu, Xinyi ; Qu, Shenchun</creator><creatorcontrib>Dong, Yuhan ; Ye, Xialin ; Cao, Lifang ; Yu, Xinyi ; Qu, Shenchun</creatorcontrib><description>Diospyros kaki Thunb. cv. Nan-tong-xiao-fang-shi (‘Nan-tong-xiao-fang-shi’) interstocks play a critical role in the scion dwarfing. However, the understanding of the molecular signaling pathways that regulate the scion dwarfing with ‘Nantong- xiao-fang-shi’ as interstocks remain unclear. In this work, the regulatory network in the scion dwarfing with ‘Nan-tongxiao- fang-shi’ as interstocks was identified. Using a yeast one-hybrid library screening, luciferase activity analysis, luciferase complementation imaging assays and GFP signal detection, a SPL transcription factor named Diospyros kaki SPL (DKSPL), potentially functioning as a transcriptional activator of the Diospyros kaki GA2ox1 (DKGA2ox1) gene, was identified as a key stimulating factor in the persimmon growth and development. The DKSPL was found in the nucleus, and might play a role in the transcriptional regulation system. A microRNA named miR171f_3 was identified, which might act as a negative regulator of Diospyros kaki SCR (DKSCR) in persimmon. The interactions between DKSCR and seven proteins were experimentally validated with a yeast two-hybrid library screening. Compared to the non-grafted wildtype persimmon, the tissue section of graft union healed well due to the increased expression of cinnamyl-alcohol dehydrogenase. These results indicate that DKGA2ox1 and miR171f_3 may co-promote the scion dwarfing by plant hormone signal transduction pathways.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-021-03765-3</identifier><identifier>PMID: 34739601</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Agriculture ; Alcohol dehydrogenase ; Biomedical and Life Sciences ; Cinnamyl-alcohol dehydrogenase ; Complementation ; Diospyros - genetics ; Diospyros kaki ; Ecology ; Forestry ; Fruit ; Gene regulation ; Libraries ; Life Sciences ; MicroRNAs - genetics ; miRNA ; Next-generation sequencing ; ORIGINAL ARTICLE ; Persimmons ; Plant Growth Regulators ; Plant hormones ; Plant Sciences ; Ribonucleic acid ; RNA ; Screening ; Signal detection ; Signal transduction ; Transcription Factors ; Yeast ; Yeasts</subject><ispartof>Planta, 2021-12, Vol.254 (6), p.1-12, Article 113</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-6a625cc2bb8a4fd6ef581e6e84e85b299fbba5868a91a26cfa81afef82ddef9b3</citedby><cites>FETCH-LOGICAL-c397t-6a625cc2bb8a4fd6ef581e6e84e85b299fbba5868a91a26cfa81afef82ddef9b3</cites><orcidid>0000-0003-3615-037X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34739601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Yuhan</creatorcontrib><creatorcontrib>Ye, Xialin</creatorcontrib><creatorcontrib>Cao, Lifang</creatorcontrib><creatorcontrib>Yu, Xinyi</creatorcontrib><creatorcontrib>Qu, Shenchun</creatorcontrib><title>The regulation of DKGA2ox1 and miR171f_3 in scion dwarfing with Diospyros kaki Thunb. cv. ‘Nan-tong-xiao-fang-shi’ as interstocks</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Diospyros kaki Thunb. cv. Nan-tong-xiao-fang-shi (‘Nan-tong-xiao-fang-shi’) interstocks play a critical role in the scion dwarfing. However, the understanding of the molecular signaling pathways that regulate the scion dwarfing with ‘Nantong- xiao-fang-shi’ as interstocks remain unclear. In this work, the regulatory network in the scion dwarfing with ‘Nan-tongxiao- fang-shi’ as interstocks was identified. Using a yeast one-hybrid library screening, luciferase activity analysis, luciferase complementation imaging assays and GFP signal detection, a SPL transcription factor named Diospyros kaki SPL (DKSPL), potentially functioning as a transcriptional activator of the Diospyros kaki GA2ox1 (DKGA2ox1) gene, was identified as a key stimulating factor in the persimmon growth and development. The DKSPL was found in the nucleus, and might play a role in the transcriptional regulation system. A microRNA named miR171f_3 was identified, which might act as a negative regulator of Diospyros kaki SCR (DKSCR) in persimmon. The interactions between DKSCR and seven proteins were experimentally validated with a yeast two-hybrid library screening. Compared to the non-grafted wildtype persimmon, the tissue section of graft union healed well due to the increased expression of cinnamyl-alcohol dehydrogenase. These results indicate that DKGA2ox1 and miR171f_3 may co-promote the scion dwarfing by plant hormone signal transduction pathways.</description><subject>Agriculture</subject><subject>Alcohol dehydrogenase</subject><subject>Biomedical and Life Sciences</subject><subject>Cinnamyl-alcohol dehydrogenase</subject><subject>Complementation</subject><subject>Diospyros - genetics</subject><subject>Diospyros kaki</subject><subject>Ecology</subject><subject>Forestry</subject><subject>Fruit</subject><subject>Gene regulation</subject><subject>Libraries</subject><subject>Life Sciences</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>Next-generation sequencing</subject><subject>ORIGINAL ARTICLE</subject><subject>Persimmons</subject><subject>Plant Growth Regulators</subject><subject>Plant hormones</subject><subject>Plant Sciences</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Screening</subject><subject>Signal detection</subject><subject>Signal transduction</subject><subject>Transcription Factors</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1uFDEQhS0EIkPgAkggS9mw8cR_3baXUQJJlChIaFhb7m57xvNjD3Y3SXbZcAe4Xk4SDx2CxIJVlVTfe1WqB8BbgqcEY3GYMea0QpgShJmoK8SegQnhjCKKuXwOJhiXHitW7YFXOS8xLkMhXoI9xgVTNSYT8GO2sDDZ-bA2vY8BRgdPLk6PaLwh0IQObvwXIojTDPoAc7tDumuTnA9zeO37BTzxMW9vU8xwZVYezhZDaKaw_T6F93c_r0xAfQxzdONNRM6ULi_8_d0vaHIx7G3KfWxX-TV44cw62zePdR98_fRxdnyGLj-fnh8fXaKWKdGj2tS0alvaNNJw19XWVZLY2kpuZdVQpVzTmErW0ihiaN06I4lx1knaddaphu2DD6PvNsVvg8293vjc2vXaBBuHrGmlOFUCU17Qg3_QZRxSKNftKCZ4LQQrFB2ptnwgJ-v0NvmNSbeaYL0LSY8h6RKS_h2S3oneP1oPzcZ2T5I_qRSAjUAuozC36e_u_9q-G1XL8tT05EoFVVxyxR4Aa5aoPg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Dong, Yuhan</creator><creator>Ye, Xialin</creator><creator>Cao, Lifang</creator><creator>Yu, Xinyi</creator><creator>Qu, Shenchun</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3615-037X</orcidid></search><sort><creationdate>20211201</creationdate><title>The regulation of DKGA2ox1 and miR171f_3 in scion dwarfing with Diospyros kaki Thunb. cv. ‘Nan-tong-xiao-fang-shi’ as interstocks</title><author>Dong, Yuhan ; Ye, Xialin ; Cao, Lifang ; Yu, Xinyi ; Qu, Shenchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-6a625cc2bb8a4fd6ef581e6e84e85b299fbba5868a91a26cfa81afef82ddef9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agriculture</topic><topic>Alcohol dehydrogenase</topic><topic>Biomedical and Life Sciences</topic><topic>Cinnamyl-alcohol dehydrogenase</topic><topic>Complementation</topic><topic>Diospyros - genetics</topic><topic>Diospyros kaki</topic><topic>Ecology</topic><topic>Forestry</topic><topic>Fruit</topic><topic>Gene regulation</topic><topic>Libraries</topic><topic>Life Sciences</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>Next-generation sequencing</topic><topic>ORIGINAL ARTICLE</topic><topic>Persimmons</topic><topic>Plant Growth Regulators</topic><topic>Plant hormones</topic><topic>Plant Sciences</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Screening</topic><topic>Signal detection</topic><topic>Signal transduction</topic><topic>Transcription Factors</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yuhan</creatorcontrib><creatorcontrib>Ye, Xialin</creatorcontrib><creatorcontrib>Cao, Lifang</creatorcontrib><creatorcontrib>Yu, Xinyi</creatorcontrib><creatorcontrib>Qu, Shenchun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Yuhan</au><au>Ye, Xialin</au><au>Cao, Lifang</au><au>Yu, Xinyi</au><au>Qu, Shenchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The regulation of DKGA2ox1 and miR171f_3 in scion dwarfing with Diospyros kaki Thunb. cv. ‘Nan-tong-xiao-fang-shi’ as interstocks</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>254</volume><issue>6</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>113</artnum><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Diospyros kaki Thunb. cv. Nan-tong-xiao-fang-shi (‘Nan-tong-xiao-fang-shi’) interstocks play a critical role in the scion dwarfing. However, the understanding of the molecular signaling pathways that regulate the scion dwarfing with ‘Nantong- xiao-fang-shi’ as interstocks remain unclear. In this work, the regulatory network in the scion dwarfing with ‘Nan-tongxiao- fang-shi’ as interstocks was identified. Using a yeast one-hybrid library screening, luciferase activity analysis, luciferase complementation imaging assays and GFP signal detection, a SPL transcription factor named Diospyros kaki SPL (DKSPL), potentially functioning as a transcriptional activator of the Diospyros kaki GA2ox1 (DKGA2ox1) gene, was identified as a key stimulating factor in the persimmon growth and development. The DKSPL was found in the nucleus, and might play a role in the transcriptional regulation system. A microRNA named miR171f_3 was identified, which might act as a negative regulator of Diospyros kaki SCR (DKSCR) in persimmon. The interactions between DKSCR and seven proteins were experimentally validated with a yeast two-hybrid library screening. Compared to the non-grafted wildtype persimmon, the tissue section of graft union healed well due to the increased expression of cinnamyl-alcohol dehydrogenase. These results indicate that DKGA2ox1 and miR171f_3 may co-promote the scion dwarfing by plant hormone signal transduction pathways.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>34739601</pmid><doi>10.1007/s00425-021-03765-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3615-037X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2021-12, Vol.254 (6), p.1-12, Article 113
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_2594297024
source Springer Nature
subjects Agriculture
Alcohol dehydrogenase
Biomedical and Life Sciences
Cinnamyl-alcohol dehydrogenase
Complementation
Diospyros - genetics
Diospyros kaki
Ecology
Forestry
Fruit
Gene regulation
Libraries
Life Sciences
MicroRNAs - genetics
miRNA
Next-generation sequencing
ORIGINAL ARTICLE
Persimmons
Plant Growth Regulators
Plant hormones
Plant Sciences
Ribonucleic acid
RNA
Screening
Signal detection
Signal transduction
Transcription Factors
Yeast
Yeasts
title The regulation of DKGA2ox1 and miR171f_3 in scion dwarfing with Diospyros kaki Thunb. cv. ‘Nan-tong-xiao-fang-shi’ as interstocks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A45%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20regulation%20of%20DKGA2ox1%20and%20miR171f_3%20in%20scion%20dwarfing%20with%20Diospyros%20kaki%20Thunb.%20cv.%20%E2%80%98Nan-tong-xiao-fang-shi%E2%80%99%20as%20interstocks&rft.jtitle=Planta&rft.au=Dong,%20Yuhan&rft.date=2021-12-01&rft.volume=254&rft.issue=6&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=113&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-021-03765-3&rft_dat=%3Cjstor_proqu%3E27294849%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-6a625cc2bb8a4fd6ef581e6e84e85b299fbba5868a91a26cfa81afef82ddef9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2593746773&rft_id=info:pmid/34739601&rft_jstor_id=27294849&rfr_iscdi=true