Loading…

Non-Vibratory Pressure Sensation Produced by Ultrasound Focus Moving Laterally and Repetitively With Fine Spatial Step Width

Focused airborne ultrasound provides various noncontact spatiotemporal pressure patterns on the skin. However, the presentation of static force remains an untouched issue because the static radiation force by ultrasound is too weak for the human hand to perceive. Hence, creatable sensations have bee...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on haptics 2022-04, Vol.15 (2), p.441-450
Main Authors: Morisaki, Tao, Fujiwara, Masahiro, Makino, Yasutoshi, Shinoda, Hiroyuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Focused airborne ultrasound provides various noncontact spatiotemporal pressure patterns on the skin. However, the presentation of static force remains an untouched issue because the static radiation force by ultrasound is too weak for the human hand to perceive. Hence, creatable sensations have been limited to vibrations or some dynamically changing feelings. This study demonstrates that a non-vibratory pressure sensation is presented by low-frequency Lateral Modulation (LM) with a fine spatial step width. LM is a pressure modulation method that moves a single ultrasound focus laterally and repetitively along the skin surface. The produced sensation in this study was not perfectly static, but the vibratory perception contained in the stimulus was significantly suppressed under a condition while maintaining its intense perception. We found the condition was 5 to 15 Hz in the LM frequency with a motion step width of less than 1 mm. In a comparison test in the most vibration-suppressed case, the participants reported 0.21 N as an equivalent force to the LM stimulus, significantly higher than the 0.027 N force physically applied by the ultrasound. The statistical analysis also showed that the step width of the LM had a significant effect on its vibratory sensation but not on the intensity of the evoked pressure sensation.
ISSN:1939-1412
2329-4051
DOI:10.1109/TOH.2021.3125843