Loading…

Deep graph representations embed network information for robust disease marker identification

Abstract Motivation Accurate disease diagnosis and prognosis based on omics data rely on the effective identification of robust prognostic and diagnostic markers that reflect the states of the biological processes underlying the disease pathogenesis and progression. In this article, we present GCNCC...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2022-01, Vol.38 (4), p.1075-1086
Main Authors: Maddouri, Omar, Qian, Xiaoning, Yoon, Byung-Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Motivation Accurate disease diagnosis and prognosis based on omics data rely on the effective identification of robust prognostic and diagnostic markers that reflect the states of the biological processes underlying the disease pathogenesis and progression. In this article, we present GCNCC, a Graph Convolutional Network-based approach for Clustering and Classification, that can identify highly effective and robust network-based disease markers. Based on a geometric deep learning framework, GCNCC learns deep network representations by integrating gene expression data with protein interaction data to identify highly reproducible markers with consistently accurate prediction performance across independent datasets possibly from different platforms. GCNCC identifies these markers by clustering the nodes in the protein interaction network based on latent similarity measures learned by the deep architecture of a graph convolutional network, followed by a supervised feature selection procedure that extracts clusters that are highly predictive of the disease state. Results By benchmarking GCNCC based on independent datasets from different diseases (psychiatric disorder and cancer) and different platforms (microarray and RNA-seq), we show that GCNCC outperforms other state-of-the-art methods in terms of accuracy and reproducibility. Availability and implementation https://github.com/omarmaddouri/GCNCC. Supplementary information Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btab772