Loading…

The effect of topography on SAR calibration

During normal synthetic aperture radar (SAR) processing, a flat Earth is assumed when performing radiometric corrections such as antenna pattern and scattering area removal. The authors examine the effects of topographic variations on these corrections. Local slopes will cause the actual scattering...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 1993-09, Vol.31 (5), p.1036-1043
Main Authors: van Zyl, J.J., Chapman, B.D., Dubois, P., Shi, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During normal synthetic aperture radar (SAR) processing, a flat Earth is assumed when performing radiometric corrections such as antenna pattern and scattering area removal. The authors examine the effects of topographic variations on these corrections. Local slopes will cause the actual scattering area to be different from that calculated using the flat Earth assumption. It is shown that this effect may easily cause calibration errors larger than a decibel. Ignoring the topography during antenna pattern removal may also introduce errors of several decibels in the case of airborne systems. The effect of topography on antenna pattern removal is expected to be negligible for spaceborne SARs. The authors show how these effects can be taken into account if a digital elevation model is available for the imaged area. The errors are quantified for two different types of terrain, a moderate relief area near Tombstone, AZ, and a high relief area near Oetztal in the Austrian Alps. The authors show errors for two well-known radar systems, the C-band ERS-1 spaceborne radar system and the three frequency NASA/JPL airborne SAR system (AIRSAR).< >
ISSN:0196-2892
1558-0644
DOI:10.1109/36.263774