Loading…

Geometry of Triple Junctions during Grain Boundary Premelting

Grain boundaries (GBs) whose energy is larger than twice the energy of the solid-liquid interface exhibit the premelting phenomenon, for which an atomically thin liquid layer develops at temperatures slightly below the bulk melting temperature. Premelting can have a severe impact on the structural i...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2021-11, Vol.127 (22), p.225701-225701, Article 225701
Main Authors: Torabi Rad, M, Boussinot, G, Apel, M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Grain boundaries (GBs) whose energy is larger than twice the energy of the solid-liquid interface exhibit the premelting phenomenon, for which an atomically thin liquid layer develops at temperatures slightly below the bulk melting temperature. Premelting can have a severe impact on the structural integrity of a polycrystalline material and on the mechanical high-temperature properties, also in the context of crack formation during the very last stages of solidification. The triple junction between a dry GB and the two solid-liquid interfaces of a liquid layer propagating along the GB cannot be defined from macroscopic continuum properties and surface tension equilibria in terms of Young's law. We show how incorporating atomistic scale physics using a disjoining potential regularizes the state of the triple junction and yields an equilibrium with a well-defined microscopic contact angle. We support this finding by dynamical simulations using a multiphase field model with obstacle potential for both purely kinetic and diffusive conditions. Generally, our results should provide insights on the dynamics of GB phase transitions, of which the complex phenomena associated with liquid metal embrittlement are an example.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.127.225701