Loading…
Scorpion higher phylogeny and classification, taxonomic anarchy, and standards for peer review in online publishing
Soleglad and Fet's (2003a) attempt to reconstruct the phylogeny of Recent (including extant) scorpions, the revised classification derived from it, and recent emendations, mostly published in their self‐edited online journal, Euscorpius, are deficient. Separate analyses of three independent mat...
Saved in:
Published in: | Cladistics 2005-10, Vol.21 (5), p.446-494 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Soleglad and Fet's (2003a) attempt to reconstruct the phylogeny of Recent (including extant) scorpions, the revised classification derived from it, and recent emendations, mostly published in their self‐edited online journal, Euscorpius, are deficient. Separate analyses of three independent matrices (morphology, 16S rDNA, 18S rDNA) were presented. In the morphological matrix, 52 binary and 10 tristate trichobothrial characters were replaced with one character comprising six ordered states representing trichobothrial “types”. The remaining matrix of 105 characters was further reduced to 33 “fundamental” characters (20% of the morphological dataset), the analysis of which appears to be the basis for the revised classification presented. The taxon sample for the morphological analysis included 14 supraspecific terminal taxa representing genera, the monophyly of only 7 (12.5%) of which has been confirmed. A composite terminal, assembled from the fragments of fossils that may not be confamilial let alone monophyletic, was created for the Palaeopisthacanthidae, employed as the primary outgroup for the analysis. Other important outgroup taxa, notably eurypterids, xiphosurans and other arachnids, were omitted entirely. The morphological characters presented contained numerous unjustifiable assumptions of character polarity and phylogenetic relationship. An approach to character coding, deliberately adopted to reduce “homoplasy”, biased the analysis towards a preconceived result. Structurally and topographically similar features in different taxa were explicitly assigned separate (often autapomorphic) states according to presumed phylogenetic relationships among the taxa in which they were observed. Putative “reversals” were coded as separate characters or states. Character transformation was forced by ordering, additive coding or Sankoff optimization through allegedly intermediate states for which there is no empirical evidence. Many characters were defined in a manner that demonstrates either a lack of understanding of, or disregard for, established methods and standards of morphological character coding. Some states display overlapping variation whereas others subsume variation that is not structurally or topographically similar. Polymorphic “states” were created for terminals with interspecific variation and unknown “states” for terminals that should have been scored unknown. Many characters were not evaluated for particular terminal taxa, but merely scored ina |
---|---|
ISSN: | 0748-3007 1096-0031 |
DOI: | 10.1111/j.1096-0031.2005.00073.x |