Loading…

Nanoconfined bimetallic sulfides (CoSn)S heterostructure in carbon microsphere as a high-performance anode for half/full sodium-ion batteries

Binary metal sulfides CoS@SnS nanoparticles confined in N-doped carbon microsphere have been reasonably fabricated, which exhibits excellent electrochemical performance when evaluated as an anode material for half/full sodium-ion batteries. [Display omitted] The development of high-capacity anode ma...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2022-03, Vol.609, p.403-413
Main Authors: Wan, Shuyun, Cheng, Ming, Chen, Hongyi, Zhu, Huijuan, Liu, Qiming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Binary metal sulfides CoS@SnS nanoparticles confined in N-doped carbon microsphere have been reasonably fabricated, which exhibits excellent electrochemical performance when evaluated as an anode material for half/full sodium-ion batteries. [Display omitted] The development of high-capacity anode materials is crucial for sodium-ion batteries. Alloy-type anode materials have attracted tremendous attention due to their high theoretical capacities. Nonetheless, the realizations of high capacity and remarkable cycling stability are actually hindered by the sluggish reaction kinetics of sodium storage. Here, we report a binary metal sulfides CoS@SnS heterostructure confined in carbon microspheres (denoted as (CoSn)S/C) through a facile hydrothermal reaction combined with annealing treatment. The (CoSn)S/C with micro/nanostructure can shorten ion diffusion length and increase mechanical strength of electrode. Besides, the heterogeneous interface between CoS and SnS can improve the inherent conductivity and favor the rapid transfer of Na+. Benefitting from these advantages, (CoSn)S/C composite exhibits a high reversible capacity of 463 mAh g−1 and superior durability (368 mAh g−1 at 2 A g−1 after 1000 cycles). Notably, the assembled Na3V2(PO4)3//(CoSn)S/C full cell delivers a reversible capacity of 386 mAh g−1 at 0.2 A g−1, proving that the (CoSn)S/C is a promising anode material for sodium-ion batteries. The density functional theory (DFT) calculations unveil the mechanism and significance of the constructed CoS@SnS heterostructure for the sodium storage at atomic level. This work provides an important reference for in-depth understanding of reaction kinetics of bimetallic sulfides heterostructure.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2021.12.021