Loading…
New Insights on the Sodium Water-in-Salt Electrolyte and Carbon Electrode Interface from Electrochemistry and Operando Raman Studies
Comprehensive electrochemical and operando Raman studies are performed to investigate the electrochemical stability window (ESW) of supercapacitors filled with normal (salt-in-water) and highly concentrated (water-in-salt, WiSE) electrolytes. Impedance and chronoamperometric experiments are employed...
Saved in:
Published in: | ACS applied materials & interfaces 2021-12, Vol.13 (51), p.61139-61153 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Comprehensive electrochemical and operando Raman studies are performed to investigate the electrochemical stability window (ESW) of supercapacitors filled with normal (salt-in-water) and highly concentrated (water-in-salt, WiSE) electrolytes. Impedance and chronoamperometric experiments are employed and combined with cyclic voltammetry to correctly define the ESW for a WiSE-based device. The total absence of water-splitting resulted in phase angles close to −90° in the impedance data. It is verified that a 17 m NaClO4 electrolyte avoids the water-splitting up to 1.8 V. Furthermore, Raman studies under dynamic and static polarization conditions corroborate the existence of a solvent blocking interface (SBI), which inhibits the occurrence of water-splitting. Also, the reversible nature of the charge-storage process is assessed as a function of the applied voltage. At extreme polarization, the SBI structure is disrupted, thus allowing the occurrence of water-splitting and anionic (ClO4 –) intercalation between the graphene sheets. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c18777 |