Loading…
MACA: marker-based automatic cell-type annotation for single-cell expression data
Abstract Summary Accurately identifying cell types is a critical step in single-cell sequencing analyses. Here, we present marker-based automatic cell-type annotation (MACA), a new tool for annotating single-cell transcriptomics datasets. We developed MACA by testing four cell-type scoring methods w...
Saved in:
Published in: | Bioinformatics 2022-03, Vol.38 (6), p.1756-1760 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Summary
Accurately identifying cell types is a critical step in single-cell sequencing analyses. Here, we present marker-based automatic cell-type annotation (MACA), a new tool for annotating single-cell transcriptomics datasets. We developed MACA by testing four cell-type scoring methods with two public cell-marker databases as reference in six single-cell studies. MACA compares favorably to four existing marker-based cell-type annotation methods in terms of accuracy and speed. We show that MACA can annotate a large single-nuclei RNA-seq study in minutes on human hearts with ∼290K cells. MACA scales easily to large datasets and can broadly help experts to annotate cell types in single-cell transcriptomics datasets, and we envision MACA provides a new opportunity for integration and standardization of cell-type annotation across multiple datasets.
Availability and implementation
MACA is written in python and released under GNU General Public License v3.0. The source code is available at https://github.com/ImXman/MACA.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/btab840 |