Loading…
The First FRET-Based RNA Aptamer NanoKit for Sensitively and Specifically Detecting c‑di-GMP
An effective method to identify c-di-GMP may significantly facilitate the exploration of its signaling pathways and bacterial pathogenesis. Herein, we have developed the first conjugated polymer-amplified RNA aptamer NanoKit with a unique core–shell–shell architecture, which combines the advantages...
Saved in:
Published in: | Nano letters 2022-01, Vol.22 (2), p.716-725 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An effective method to identify c-di-GMP may significantly facilitate the exploration of its signaling pathways and bacterial pathogenesis. Herein, we have developed the first conjugated polymer-amplified RNA aptamer NanoKit with a unique core–shell–shell architecture, which combines the advantages of high selectivity of RNA aptamers and high sensitivity of strong fluorescence resonance energy transfer (FRET) effect, for precisely detecting c-di-GMP. We identified that NanoKit could selectively detect c-di-GMP with a low detection limit of 50 pM. Importantly, NanoKit could identify bacterial species and physiological states, such as planktonic, biofilm, and even antibiotic-resistance, on the basis of their different c-di-GMP expression patterns. Particularly, NanoKit could distinguish bacterial infection and inflammation and identify Pseudomonas aeruginosa associated pneumonia and sepsis, thereby guiding treatment choice and monitoring antibiotic effects. Therefore, NanoKit provides a promising strategy to rapidly identify c-di-GMP and its associated diseases and may benefit for pathophoresis management. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.1c03970 |