Loading…

Acoustofluidic interferometric device for rapid single-cell physical phenotyping

High-throughput single-cell analysis based on physical properties (such as morphology or mechanics) is emerging as a powerful tool to inform clinical research, with a great potential for translation towards diagnosis. Here we present a novel microfluidic approach adopting acoustic waves to manipulat...

Full description

Saved in:
Bibliographic Details
Published in:European biophysics journal 2022-03, Vol.51 (2), p.185-191
Main Authors: Mejía Morales, J., Glynne-Jones, P., Vassalli, M., Lippi, G. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-throughput single-cell analysis based on physical properties (such as morphology or mechanics) is emerging as a powerful tool to inform clinical research, with a great potential for translation towards diagnosis. Here we present a novel microfluidic approach adopting acoustic waves to manipulate and mechanically stimulate single cells, and interferometry to track changes in the morphology and measure size, deformability, and refractive index of non-adherent cells. The method is based on the integration within the acoustofluidic channel of a low-finesse Fabry–Perot resonator, providing very high sensitivity and a speed potentially suitable to obtain the high-throughput necessary to handle the variability stemming from the biological diversity of single cells. The proposed approach is applied to a set of different samples: reference polystyrene beads, algae and yeast. The results demonstrate the capability of the acoustofluidic interferometric device to detect and quantify optomechanical properties of single cells with a throughput suitable to address label-free single-cell clinical analysis.
ISSN:0175-7571
1432-1017
DOI:10.1007/s00249-021-01585-7