Loading…

Expression, Purification, and Characterization of the Recombinant, Two-Component, Response Regulator ArlR from Fusobacterium nucleatum

Fusobacterium nucleatum is associated with the incidence and development of multiple diseases, such as periodontitis and colorectal cancer (CRC). Until now, studies have proved only a few proteins to be associated with such pathogenic diseases. The two-component system is one of the most prevalent f...

Full description

Saved in:
Bibliographic Details
Published in:Applied biochemistry and biotechnology 2022-05, Vol.194 (5), p.2093-2107
Main Authors: Fan, Ruochen, Li, Zhuting, Shi, Xian, Wang, Lulu, Zhang, Xuqiang, Dong, Yuesheng, Quan, Chunshan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fusobacterium nucleatum is associated with the incidence and development of multiple diseases, such as periodontitis and colorectal cancer (CRC). Until now, studies have proved only a few proteins to be associated with such pathogenic diseases. The two-component system is one of the most prevalent forms of bacterial signal transduction related to intestinal diseases. Here, we report a novel, recombinant, two-component, response regulator protein ArlR from the genome of F. nucleatum strain ATCC 25,586. We optimized the expression and purification conditions of ArlR; in addition, we characterized the interaction of this response regulator protein with the corresponding histidine kinase and DNA sequence. The full-length ArlR was successfully expressed in six E. coli host strains. However, optimum expression conditions of ArlR were present only in E. coli strain BL21 CodonPlus (DE3) RIL that was later induced with isopropyl β-D-1-thiogalactopyranoside (IPTG) for 8 h at 25 °C. The SDS-PAGE analysis revealed the molecular weight of the recombinant protein as 27.3 kDa with approximately 90% purity after gel filtration chromatography. Because ArlR was biologically active after its purification, it accepted the corresponding phosphorylated histidine kinase phosphate group and bound to the analogous DNA sequence. The binding constant between ArlR and the corresponding histidine kinase was about 2.1 μM, whereas the binding constant between ArlR and its operon was 6.4 μM. Altogether, these results illustrate an effective expression and purification method for the novel two-component system protein ArlR.
ISSN:0273-2289
1559-0291
DOI:10.1007/s12010-021-03785-5