Loading…
Synthesis of 8-aminomorphans with high KOR affinity
2-Azabicyclo[3.3.1]nonanes (morphans) with a (3,4-dichlorophenyl)acetyl group at 2-position and a pyrrolidino moiety at 8-position were designed as conformationally restricted analogs of piperidine-based KOR agonists. The synthesis started with 4-oxopiperidine-2-carboxylic acid comprising 13 reactio...
Saved in:
Published in: | European journal of medicinal chemistry 2022-02, Vol.230, p.114079-114079, Article 114079 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 2-Azabicyclo[3.3.1]nonanes (morphans) with a (3,4-dichlorophenyl)acetyl group at 2-position and a pyrrolidino moiety at 8-position were designed as conformationally restricted analogs of piperidine-based KOR agonists. The synthesis started with 4-oxopiperidine-2-carboxylic acid comprising 13 reaction steps. At first the ketone 10 was transformed into diester 7 bearing a propionate side chain. Dieckmann condensation of diester 7 to afford bicyclic enolester 14 and subsequent Krapcho deethoxycarbonylation represent the key steps of the synthesis. The enantiomeric pyrrolidines (1S,5R,8R)-5a and (1R,5S,8S)-5a were separated by chiral HPLC. The eutomer (1S,5R,8R)-5a showed high KOR affinity (Ki = 18 nM) and selectivity over MOR, DOR and σ2 receptors. It was concluded that the dihedral angle of the KOR pharmacophore N(pyrrolididine)-C-C-N(acyl) of (1S,5R,8R)-5a (68°) is close to the bioactive conformation of the flexible KOR agonist 3.
[Display omitted]
•Conformational restriction of potent KOR agonists resulted in 8-aminomorphans.•Dieckmann condensation led to the bicyclic system.•Reductive amination provided stereoselectively the endo-configured aminomorphans.•Enantiomers were separated by chiral HPLC.•High KOR affinity (Ki = 18 nM) was observed for the pyrrolidine derivative. |
---|---|
ISSN: | 0223-5234 1768-3254 |
DOI: | 10.1016/j.ejmech.2021.114079 |