Loading…
Blood Glucose Level Prediction: Advanced Deep-Ensemble Learning Approach
Optimal and sustainable control of blood glucose levels (BGLs) is the aim of type-1 diabetes management. The automated prediction of BGL using machine learning (ML) algorithms is considered as a promising tool that can support this aim. In this context, this paper proposes new advanced ML architectu...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2022-06, Vol.26 (6), p.2758-2769 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Optimal and sustainable control of blood glucose levels (BGLs) is the aim of type-1 diabetes management. The automated prediction of BGL using machine learning (ML) algorithms is considered as a promising tool that can support this aim. In this context, this paper proposes new advanced ML architectures to predict BGL leveraging deep learning and ensemble learning. The deep-ensemble models are developed with novel meta-learning approaches, where the feasibility of changing the dimension of a univariate time series forecasting task is investigated. The models are evaluated regression-wise and clinical-wise. The performance of the proposed ensemble models are compared with benchmark non-ensemble models. The results show the superior performance of the developed ensemble models over developed non-ensemble benchmark models and also show the efficacy of the proposed meta-learning approaches. |
---|---|
ISSN: | 2168-2194 2168-2208 |
DOI: | 10.1109/JBHI.2022.3144870 |