Loading…

Evaluation of human melanoma and normal formalin paraffin-fixed samples using Raman and LIBS fused data

In this research, we developed a novel method of quantitative analysis to increase the detection potential for screening and classification of skin cancer (melanoma). We fused two distinct optical approaches, an atomic spectroscopic detection technique laser-induced breakdown spectroscopy (LIBS) and...

Full description

Saved in:
Bibliographic Details
Published in:Lasers in medical science 2022-07, Vol.37 (5), p.2489-2499
Main Authors: Khan, Muhammad Nouman, Wang, Qianqian, Idrees, Bushra Sana, Teng, Geer, Xiangli, Wenting, Cui, Xutai, Wei, Kai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this research, we developed a novel method of quantitative analysis to increase the detection potential for screening and classification of skin cancer (melanoma). We fused two distinct optical approaches, an atomic spectroscopic detection technique laser-induced breakdown spectroscopy (LIBS) and a vibrational molecular spectroscopic technique known as Raman spectroscopy. Melanoma is a kind of skin cancer, also known as malignant melanoma, that developed in melanocytes cells, which produced melanin. Classification of melanoma cancerous tissues is a fundamental problem in biomedicine. For early melanoma cancer diagnosis and treatment, precise and accurate categorizing is critically essential. Laser-based spectroscopic approaches can be used as an operating instrument for simultaneous tissue ablation and ablated tissue elemental and molecular analysis. For this purpose, melanoma and normal paraffin-embedded tissues are used as a sample for LIBS and Raman measurement. We studied the data provided by laser-based spectroscopic methods using different machine learning classification techniques of extreme learning machine (ELM), partial least square discriminant analysis (PLS-DA), and K nearest neighbors (kNN). For visualization of melanoma and normal data, principal component analysis (PCA) is also used. Three different ways are used to process the data, LIBS measurement, Raman measurement, and combine data measurement (merged/fused data), and then compared the results. ELM classification model achieved the highest accuracy (100%) for combined data as well as for Raman and LIBS data, respectively. According to the experimental results, we can assume that Raman spectroscopy and LIBS combine can significantly improve the identification and classification accuracy of melanoma and normal specimens.
ISSN:1435-604X
0268-8921
1435-604X
DOI:10.1007/s10103-022-03513-3