Loading…

Sialyl-Tn antigen facilitates extracellular vesicle-mediated transfer of FAK and enhances motility of recipient cells

Abstract Protein glycosylation plays a pivotal role in tumour development by modulating molecular interactions and cellular signals. Sialyl-Tn (sTn) antigen is a tumour-associating carbohydrate epitope whose expression correlates with metastasis and poor prognosis of various cancers; however, its pa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biochemistry (Tokyo) 2022-05, Vol.171 (5), p.543-554
Main Authors: Nagao, Keisuke, Maeda, Kento, Hosomi, Kasumi, Morioka, Kaito, Inuzuka, Tatsutoshi, Ohtsubo, Kazuaki
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Protein glycosylation plays a pivotal role in tumour development by modulating molecular interactions and cellular signals. Sialyl-Tn (sTn) antigen is a tumour-associating carbohydrate epitope whose expression correlates with metastasis and poor prognosis of various cancers; however, its pathophysiological function is poorly understood. Extracellular vesicles (EVs) derived from cancer cells act as a signal mediator amongst tumour microenvironments by transferring cargo molecules. sTn antigen has been found in the glycans of EVs, thereby the functional relevance of sTn antigen to the regulation of tumour microenvironments could be expected. In the present study, we showed that sTn antigen induced TP53 and tumour suppressor–activated pathway 6 (TSAP6) and consequently enhanced EV production. Besides, the genetic attenuation of TSAP6 resulted in the reduction of the EV production in the sTn antigen expressing cells. The enhanced EV production in the sTn antigen–expressing cells consequently augmented the delivery of EVs to recipient cells. The produced EVs selectively and abundantly encased focal adhesion kinase and transferred it to EV-recipient cells, and thus, their cellular motility was enhanced. These findings would contribute to facilitate the elucidation of the pathophysiological significance of the sTn antigen in the tumour microenvironments and tumour development. Graphical Abstract Graphical Abstract
ISSN:0021-924X
1756-2651
DOI:10.1093/jb/mvac008