Loading…
Wave-field representations with Green's functions, propagator matrices, and Marchenko-type focusing functions
Classical acoustic wave-field representations consist of volume and boundary integrals, of which the integrands contain specific combinations of Green's functions, source distributions, and wave fields. Using a unified matrix-vector wave equation for different wave phenomena, these representati...
Saved in:
Published in: | The Journal of the Acoustical Society of America 2022-01, Vol.151 (1), p.587-608 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Classical acoustic wave-field representations consist of volume and boundary integrals, of which the integrands contain specific combinations of Green's functions, source distributions, and wave fields. Using a unified matrix-vector wave equation for different wave phenomena, these representations can be reformulated in terms of Green's matrices, source vectors, and wave-field vectors. The matrix-vector formalism also allows the formulation of representations in which propagator matrices replace the Green's matrices. These propagator matrices, in turn, can be expressed in terms of Marchenko-type focusing functions. An advantage of the representations with propagator matrices and focusing functions is that the boundary integrals in these representations are limited to a single open boundary. This makes these representations a suitable basis for developing advanced inverse scattering, imaging and monitoring methods for wave fields acquired on a single boundary. |
---|---|
ISSN: | 0001-4966 1520-8524 |
DOI: | 10.1121/10.0009236 |