Loading…

Abiotic transformation of labile protein to refractory protein in sea water

In order to determine if organic matter dissolved in sea water may undergo abiotic alterations that make it resistant to microbial degradation, the protein ribulose 1,5-bisphosphate carboxylase (RuBPcase) was abiotically aged in sterile sea water and then exposed to natural bacterial assemblages. Ra...

Full description

Saved in:
Bibliographic Details
Published in:Marine chemistry 1994, Vol.45 (3), p.187-196
Main Authors: Keil, Richard G, Kirchman, David L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to determine if organic matter dissolved in sea water may undergo abiotic alterations that make it resistant to microbial degradation, the protein ribulose 1,5-bisphosphate carboxylase (RuBPcase) was abiotically aged in sterile sea water and then exposed to natural bacterial assemblages. Rates of protein assimilation decreased when protein was aged as little as 6 h; protein aged for 40 days was degraded 4-fold more slowly than non-aged protein. Abiotic modification rates, calculated from decreases in degradation rate with increasing aging time, were highest during the initial day of aging (0.8–4.8 d −1) and then decreased to 0.03 d −1. No aging effect was observed in organic-free sea water, indicating that organic-organic interactions produced the refractory protein. Amino acids from the protein were fully recovered after acid hydrolysis, indicating that the decreased lability was not caused by acid-stable molecular changes to the protein. Abiotic complexation of labile organic compounds with existing DOM may be a critical first step in the formation of refractory organic materials.
ISSN:0304-4203
1872-7581
DOI:10.1016/0304-4203(94)90002-7