Loading…

Evaluation of phosphorus removal in floating treatment wetlands: New insights in non-reactive phosphorus

Excess phosphorus (P) in surface runoff has significant deleterious impacts on water quality through eutrophication. Commonly, P is transported via non-point pollution and the proportion of easily plant-available reactive P (RP) among other P forms may vary significantly. Non-reactive P (NRP) can po...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2022-04, Vol.815, p.152896-152896, Article 152896
Main Authors: Shen, Shuting, Geng, Zhuofan, Li, Xiang, Lu, Xiwu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Excess phosphorus (P) in surface runoff has significant deleterious impacts on water quality through eutrophication. Commonly, P is transported via non-point pollution and the proportion of easily plant-available reactive P (RP) among other P forms may vary significantly. Non-reactive P (NRP) can potentially contribute to the eutrophication of waterbodies, however the cleavage into bio-available P forms and eventually their biological uptake remains uncertain. This holds also true for floating treatment wetlands (FTWs) which became established as nutrient mitigation measures for surface waters in recent years. However, little information is available about the conversion and removal of NRP in FTWs. In this study, the conversion and removal of different forms of P in FTWs were investigated. Experiments were operated in batch mode and treatments consisted of (1) two concentration levels: a high P concentration of 3.0 mg/L and a low P concentration of 1.0 mg/L, and (2) four mesocosm treatments: (a) artificial roots only, (b) substrates only, (c) plants only, (d) plants and substrates. The results showed that RP removal mainly depended on sedimentation, substrate sorption, and biological assimilation. The removal of NRP mainly depended on hydrolysis, microbial-mediated conversion, and biological absorption. The combination of plant and substrate provided stable and efficient phosphorus removal performance in high P conditions, while plants were important for P removal in low P conditions. Living plants were indispensable and greatly affected the performance of FTWs. The specific enrichment and culling of microorganisms by plants resulted in the formation of specific rhizosphere microbial communities and promoted the removal of NRP. Pseudomonas, Enterobacter, Acidovorax might be responsible for P mineralization in the FTWs. Comprehensive analysis indicated that the conversion and removal pathways of P in the FTWs were not mutually independent, and the plant-microbe-substrate interactions cannot be underestimated. [Display omitted] •Floating treatment wetlands were used for the conversion and removal of phosphorus.•Reactive phosphorus removal mainly depended on sedimentation, substrate sorption, and biological assimilation.•Non-reactive phosphorus removal depended on hydrolysis, microbial-mediated conversion and biological absorption.•Plants were important for phosphorus removal in low phosphorus conditions.•Specific rhizosphere microbial communities promoted th
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.152896