Loading…

Which Measures From a Sustained Attention Task Best Predict ADHD Group Membership?

Difficulty with sustaining attention to a task is a hallmark of ADHD. It would be useful to know which measures of sustained attention best predict a diagnosis of ADHD. Participants were 129 children with a diagnosis of ADHD and 129 matched controls who completed the fixed Sustained Attention to Res...

Full description

Saved in:
Bibliographic Details
Published in:Journal of attention disorders 2022-09, Vol.26 (11), p.1471-1482
Main Authors: Machida, Keitaro, Barry, Edwina, Mulligan, Aisling, Gill, Michael, Robertson, Ian H., Lewis, Frances C., Green, Benita, Kelly, Simon P, Bellgrove, Mark A., Johnson, Katherine A.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-47ead5bb9eab7707badc63310effb839eda726b5c986d777f8c3379834c180273
cites cdi_FETCH-LOGICAL-c340t-47ead5bb9eab7707badc63310effb839eda726b5c986d777f8c3379834c180273
container_end_page 1482
container_issue 11
container_start_page 1471
container_title Journal of attention disorders
container_volume 26
creator Machida, Keitaro
Barry, Edwina
Mulligan, Aisling
Gill, Michael
Robertson, Ian H.
Lewis, Frances C.
Green, Benita
Kelly, Simon P
Bellgrove, Mark A.
Johnson, Katherine A.
description Difficulty with sustaining attention to a task is a hallmark of ADHD. It would be useful to know which measures of sustained attention best predict a diagnosis of ADHD. Participants were 129 children with a diagnosis of ADHD and 129 matched controls who completed the fixed Sustained Attention to Response Task (SART). The number of commission and omission errors, standard deviation of response time (SDRT), tau, fast and slow frequency variability, d-prime, and mu were able to successfully classify children with and without ADHD. The mean response time, criterion, and sigma were not able to classify participants. The best classifiers were d-prime (0.75 Area Under the Receiver Operated Characteristic), tau (.74), SDRT (0.74), omission errors (0.72), commission errors (0.71), and SFAUS (0.70). This list of the best classifier measures derived from the SART may prove useful for the planning of future studies.
doi_str_mv 10.1177/10870547221081266
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2636877654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10870547221081266</sage_id><sourcerecordid>2636877654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-47ead5bb9eab7707badc63310effb839eda726b5c986d777f8c3379834c180273</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EglL4AVyQj1wCXmJPekKlLEUqArGIY2Q7ExpoFuzkwL_HqMAFidM8ab73NPMIOeDsmHOAE84yYCoFIaLiQusNMuJKQcJFqjejjvvkC9ghuyG8MiYBQGyTHamEkorzEbl_XlZuSW_QhMFjoJe-ramhD0PoTdVgQad9j01ftQ19NOGNnmHo6Z3HonI9nZ7Pz-mVb4cuBtQWfVhW3eke2SrNKuD-9xyTp8uLx9k8WdxeXc-mi8TJlPVJCmgKZe0EjQVgYE3htJScYVnaTE6wMCC0VW6S6SLeXWZOSphkMnU8YwLkmBytczvfvg_xrryugsPVyjTYDiEXWuoMQKs0onyNOt-G4LHMO1_Vxn_knOVfVeZ_qoyew-_4wdZY_Dp-uovA8RoI5gXz13bwTXz3n8RP7Nx6GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636877654</pqid></control><display><type>article</type><title>Which Measures From a Sustained Attention Task Best Predict ADHD Group Membership?</title><source>Sage Journals Online</source><creator>Machida, Keitaro ; Barry, Edwina ; Mulligan, Aisling ; Gill, Michael ; Robertson, Ian H. ; Lewis, Frances C. ; Green, Benita ; Kelly, Simon P ; Bellgrove, Mark A. ; Johnson, Katherine A.</creator><creatorcontrib>Machida, Keitaro ; Barry, Edwina ; Mulligan, Aisling ; Gill, Michael ; Robertson, Ian H. ; Lewis, Frances C. ; Green, Benita ; Kelly, Simon P ; Bellgrove, Mark A. ; Johnson, Katherine A.</creatorcontrib><description>Difficulty with sustaining attention to a task is a hallmark of ADHD. It would be useful to know which measures of sustained attention best predict a diagnosis of ADHD. Participants were 129 children with a diagnosis of ADHD and 129 matched controls who completed the fixed Sustained Attention to Response Task (SART). The number of commission and omission errors, standard deviation of response time (SDRT), tau, fast and slow frequency variability, d-prime, and mu were able to successfully classify children with and without ADHD. The mean response time, criterion, and sigma were not able to classify participants. The best classifiers were d-prime (0.75 Area Under the Receiver Operated Characteristic), tau (.74), SDRT (0.74), omission errors (0.72), commission errors (0.71), and SFAUS (0.70). This list of the best classifier measures derived from the SART may prove useful for the planning of future studies.</description><identifier>ISSN: 1087-0547</identifier><identifier>EISSN: 1557-1246</identifier><identifier>DOI: 10.1177/10870547221081266</identifier><identifier>PMID: 35253511</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Journal of attention disorders, 2022-09, Vol.26 (11), p.1471-1482</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-47ead5bb9eab7707badc63310effb839eda726b5c986d777f8c3379834c180273</citedby><cites>FETCH-LOGICAL-c340t-47ead5bb9eab7707badc63310effb839eda726b5c986d777f8c3379834c180273</cites><orcidid>0000-0001-7708-1177 ; 0000-0002-2029-163X ; 0000-0002-3581-9353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35253511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Machida, Keitaro</creatorcontrib><creatorcontrib>Barry, Edwina</creatorcontrib><creatorcontrib>Mulligan, Aisling</creatorcontrib><creatorcontrib>Gill, Michael</creatorcontrib><creatorcontrib>Robertson, Ian H.</creatorcontrib><creatorcontrib>Lewis, Frances C.</creatorcontrib><creatorcontrib>Green, Benita</creatorcontrib><creatorcontrib>Kelly, Simon P</creatorcontrib><creatorcontrib>Bellgrove, Mark A.</creatorcontrib><creatorcontrib>Johnson, Katherine A.</creatorcontrib><title>Which Measures From a Sustained Attention Task Best Predict ADHD Group Membership?</title><title>Journal of attention disorders</title><addtitle>J Atten Disord</addtitle><description>Difficulty with sustaining attention to a task is a hallmark of ADHD. It would be useful to know which measures of sustained attention best predict a diagnosis of ADHD. Participants were 129 children with a diagnosis of ADHD and 129 matched controls who completed the fixed Sustained Attention to Response Task (SART). The number of commission and omission errors, standard deviation of response time (SDRT), tau, fast and slow frequency variability, d-prime, and mu were able to successfully classify children with and without ADHD. The mean response time, criterion, and sigma were not able to classify participants. The best classifiers were d-prime (0.75 Area Under the Receiver Operated Characteristic), tau (.74), SDRT (0.74), omission errors (0.72), commission errors (0.71), and SFAUS (0.70). This list of the best classifier measures derived from the SART may prove useful for the planning of future studies.</description><issn>1087-0547</issn><issn>1557-1246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kElPwzAQhS0EglL4AVyQj1wCXmJPekKlLEUqArGIY2Q7ExpoFuzkwL_HqMAFidM8ab73NPMIOeDsmHOAE84yYCoFIaLiQusNMuJKQcJFqjejjvvkC9ghuyG8MiYBQGyTHamEkorzEbl_XlZuSW_QhMFjoJe-ramhD0PoTdVgQad9j01ftQ19NOGNnmHo6Z3HonI9nZ7Pz-mVb4cuBtQWfVhW3eke2SrNKuD-9xyTp8uLx9k8WdxeXc-mi8TJlPVJCmgKZe0EjQVgYE3htJScYVnaTE6wMCC0VW6S6SLeXWZOSphkMnU8YwLkmBytczvfvg_xrryugsPVyjTYDiEXWuoMQKs0onyNOt-G4LHMO1_Vxn_knOVfVeZ_qoyew-_4wdZY_Dp-uovA8RoI5gXz13bwTXz3n8RP7Nx6GQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Machida, Keitaro</creator><creator>Barry, Edwina</creator><creator>Mulligan, Aisling</creator><creator>Gill, Michael</creator><creator>Robertson, Ian H.</creator><creator>Lewis, Frances C.</creator><creator>Green, Benita</creator><creator>Kelly, Simon P</creator><creator>Bellgrove, Mark A.</creator><creator>Johnson, Katherine A.</creator><general>SAGE Publications</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7708-1177</orcidid><orcidid>https://orcid.org/0000-0002-2029-163X</orcidid><orcidid>https://orcid.org/0000-0002-3581-9353</orcidid></search><sort><creationdate>20220901</creationdate><title>Which Measures From a Sustained Attention Task Best Predict ADHD Group Membership?</title><author>Machida, Keitaro ; Barry, Edwina ; Mulligan, Aisling ; Gill, Michael ; Robertson, Ian H. ; Lewis, Frances C. ; Green, Benita ; Kelly, Simon P ; Bellgrove, Mark A. ; Johnson, Katherine A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-47ead5bb9eab7707badc63310effb839eda726b5c986d777f8c3379834c180273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machida, Keitaro</creatorcontrib><creatorcontrib>Barry, Edwina</creatorcontrib><creatorcontrib>Mulligan, Aisling</creatorcontrib><creatorcontrib>Gill, Michael</creatorcontrib><creatorcontrib>Robertson, Ian H.</creatorcontrib><creatorcontrib>Lewis, Frances C.</creatorcontrib><creatorcontrib>Green, Benita</creatorcontrib><creatorcontrib>Kelly, Simon P</creatorcontrib><creatorcontrib>Bellgrove, Mark A.</creatorcontrib><creatorcontrib>Johnson, Katherine A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of attention disorders</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machida, Keitaro</au><au>Barry, Edwina</au><au>Mulligan, Aisling</au><au>Gill, Michael</au><au>Robertson, Ian H.</au><au>Lewis, Frances C.</au><au>Green, Benita</au><au>Kelly, Simon P</au><au>Bellgrove, Mark A.</au><au>Johnson, Katherine A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Which Measures From a Sustained Attention Task Best Predict ADHD Group Membership?</atitle><jtitle>Journal of attention disorders</jtitle><addtitle>J Atten Disord</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>26</volume><issue>11</issue><spage>1471</spage><epage>1482</epage><pages>1471-1482</pages><issn>1087-0547</issn><eissn>1557-1246</eissn><abstract>Difficulty with sustaining attention to a task is a hallmark of ADHD. It would be useful to know which measures of sustained attention best predict a diagnosis of ADHD. Participants were 129 children with a diagnosis of ADHD and 129 matched controls who completed the fixed Sustained Attention to Response Task (SART). The number of commission and omission errors, standard deviation of response time (SDRT), tau, fast and slow frequency variability, d-prime, and mu were able to successfully classify children with and without ADHD. The mean response time, criterion, and sigma were not able to classify participants. The best classifiers were d-prime (0.75 Area Under the Receiver Operated Characteristic), tau (.74), SDRT (0.74), omission errors (0.72), commission errors (0.71), and SFAUS (0.70). This list of the best classifier measures derived from the SART may prove useful for the planning of future studies.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>35253511</pmid><doi>10.1177/10870547221081266</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7708-1177</orcidid><orcidid>https://orcid.org/0000-0002-2029-163X</orcidid><orcidid>https://orcid.org/0000-0002-3581-9353</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1087-0547
ispartof Journal of attention disorders, 2022-09, Vol.26 (11), p.1471-1482
issn 1087-0547
1557-1246
language eng
recordid cdi_proquest_miscellaneous_2636877654
source Sage Journals Online
title Which Measures From a Sustained Attention Task Best Predict ADHD Group Membership?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Which%20Measures%20From%20a%20Sustained%20Attention%20Task%20Best%20Predict%20ADHD%20Group%20Membership?&rft.jtitle=Journal%20of%20attention%20disorders&rft.au=Machida,%20Keitaro&rft.date=2022-09-01&rft.volume=26&rft.issue=11&rft.spage=1471&rft.epage=1482&rft.pages=1471-1482&rft.issn=1087-0547&rft.eissn=1557-1246&rft_id=info:doi/10.1177/10870547221081266&rft_dat=%3Cproquest_cross%3E2636877654%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-47ead5bb9eab7707badc63310effb839eda726b5c986d777f8c3379834c180273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2636877654&rft_id=info:pmid/35253511&rft_sage_id=10.1177_10870547221081266&rfr_iscdi=true