Loading…
Identification of a conserved chemokine receptor motif that enables ligand discrimination
Extensive ligand-receptor promiscuity in the chemokine signaling system balances beneficial redundancy and specificity. However, this feature poses a major challenge to selectively modulate the system pharmacologically. Here, we identified a conserved cluster of three aromatic receptor residues that...
Saved in:
Published in: | Science signaling 2022-03, Vol.15 (724), p.eabg7042-eabg7042 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Extensive ligand-receptor promiscuity in the chemokine signaling system balances beneficial redundancy and specificity. However, this feature poses a major challenge to selectively modulate the system pharmacologically. Here, we identified a conserved cluster of three aromatic receptor residues that anchors the second extracellular loop (ECL2) to the top of receptor transmembrane helices (TM) 4 and 5 and enables recognition of both shared and specific characteristics of interacting chemokines. This cluster was essential for the activation of several chemokine receptors. Furthermore, characteristic motifs of the ß
strand and 30s loop make the two main CC-chemokine subgroups-the macrophage inflammatory proteins (MIPs) and monocyte chemoattractant proteins (MCPs)-differentially dependent on this cluster in the promiscuous receptors CCR1, CCR2, and CCR5. The cluster additionally enabled CCR1 and CCR5 to discriminate between closely related MIPs based on the N terminus of the chemokine. G protein signaling and β-arrestin2 recruitment assays confirmed the importance of the conserved cluster in receptor discrimination of chemokine ligands. This extracellular site may facilitate the development of chemokine-related therapeutics. |
---|---|
ISSN: | 1945-0877 1937-9145 |
DOI: | 10.1126/scisignal.abg7042 |