Loading…

Natural biopolymer masks the bitterness of potassium chloride to achieve a highly efficient salt reduction for future foods

Potassium chloride (KCl) can be considered as the most ideal salt replacer to reduce dietary sodium intake and ease various health risks of a high-sodium diet. However, a high proportion of sodium chloride (NaCl) replacement with KCl remains a challenge, because KCl has an inherent metallic bitterne...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2022-04, Vol.283, p.121456-121456, Article 121456
Main Authors: Lu, Wei, Hu, Zining, Zhou, Xuelian, Qin, Yumei, Zhang, Yin, Fang, Yapeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Potassium chloride (KCl) can be considered as the most ideal salt replacer to reduce dietary sodium intake and ease various health risks of a high-sodium diet. However, a high proportion of sodium chloride (NaCl) replacement with KCl remains a challenge, because KCl has an inherent metallic bitterness. This study demonstrates a strategy for this bitterness-masking using a natural polysaccharide kappa-carrageenan to specifically bind with K+ and reduce the amount of free K+ as bitter stimulant. The results show that carrageenan can significantly slow down the release and diffusion of K+, leading to a reduced bitter taste of KCl in the mouth. Up to 50% replacement of NaCl by KCl can be achieved. Furthermore, the use of carrageenan-KCl-NaCl complex as salt substitutes can regulate mineral absorption (Na, K, Ca) and reduce hypertension and renal injury risks in the animal tests. In conclusion, this natural biopolymer-based strategy successfully masks the bitter of salt-replacer KCl, opening a route to the universally applicable salt-reduction in future foods.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2022.121456