Loading…
Global minimization by reducing the duality gap
We derive a general principle demonstrating that by partitioning the feasible set, the duality gap, existing between a nonconvex program and its lagrangian dual, can be reduced, and in important special cases, even eliminated. The principle can be implemented in a Branch and Bound algorithm which co...
Saved in:
Published in: | Mathematical programming 1994-01, Vol.63 (2), p.193-212 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We derive a general principle demonstrating that by partitioning the feasible set, the duality gap, existing between a nonconvex program and its lagrangian dual, can be reduced, and in important special cases, even eliminated. The principle can be implemented in a Branch and Bound algorithm which computes an approximate global solution and a corresponding lower bound on the global optimal value. The algorithm involves decomposition and a nonsmooth local search. Numerical results for applying the algorithm to the pooling problem in oil refineries are given. |
---|---|
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/BF01582066 |