Loading…
Crystal structure of a novel type of ornithine δ-aminotransferase from the hyperthermophilic archaeon Pyrococcus horikoshii
Ornithine δ-aminotransferase (Orn-AT) activity was detected for the enzyme annotated as a γ-aminobutyrate aminotransferase encoded by PH1423 gene from Pyrococcus horikoshii OT-3. Crystal structures of this novel archaeal ω-aminotransferase were determined for the enzyme in complex with pyridoxal 5′-...
Saved in:
Published in: | International journal of biological macromolecules 2022-05, Vol.208, p.731-740 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ornithine δ-aminotransferase (Orn-AT) activity was detected for the enzyme annotated as a γ-aminobutyrate aminotransferase encoded by PH1423 gene from Pyrococcus horikoshii OT-3. Crystal structures of this novel archaeal ω-aminotransferase were determined for the enzyme in complex with pyridoxal 5′-phosphate (PLP), in complex with PLP and l-ornithine (l-Orn), and in complex with N-(5′-phosphopyridoxyl)-l-glutamate (PLP-l-Glu). Although the sequence identity was relatively low (28%), the main-chain coordinates of P. horikoshii Orn-AT monomer showed notable similarity to those of human Orn-AT. However, the residues recognizing the α-amino group of l-Orn differ between the two enzymes. In human Orn-AT, Tyr55 and Tyr85 recognize the α-amino group, whereas the side chains of Thr92* and Asp93*, which arise from a loop in the neighboring subunit, form hydrogen bonds with the α-amino group of the substrate in P. horikoshii enzyme. Site-directed mutagenesis suggested that Asp93* plays critical roles in maintaining high affinity for the substrate. This study provides new insight into the substrate binding of a novel type of Orn-AT. Moreover, the structure of the enzyme with the reaction-intermediate analogue PLP-l-Glu bound provides the first structural evidence for the “Glu switch” mechanism in the dual substrate specificity of Orn-AT.
•The crystal structures of a novel archaeal type of ornithine δ-aminotransferase were determined.•The substrate recognition residues of this enzyme are notably different from those of human ornithine δ-aminotransferase.•This study provides the first structural evidence for the “Glu switch” mechanism of ornithine δ-aminotransferase. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2022.03.114 |