Loading…

A modular microfluidic platform to enable complex and customisable in vitro models for neuroscience

Disorders of the central nervous system (CNS) represent a global health challenge and an increased understanding of the CNS in both physiological and pathophysiological states is essential to tackle the problem. Modelling CNS conditions is difficult, as traditional models fail to recapitulate precis...

Full description

Saved in:
Bibliographic Details
Published in:Lab on a chip 2022-05, Vol.22 (10), p.1989-2000
Main Authors: Megarity, D, Vroman, R, Kriek, M, Downey, P, Bushell, T J, Zagnoni, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c281t-be7adc295741997d72d2e4386d35f9bffdbb5bae4fd0628a7afdd85dab959f5b3
cites cdi_FETCH-LOGICAL-c281t-be7adc295741997d72d2e4386d35f9bffdbb5bae4fd0628a7afdd85dab959f5b3
container_end_page 2000
container_issue 10
container_start_page 1989
container_title Lab on a chip
container_volume 22
creator Megarity, D
Vroman, R
Kriek, M
Downey, P
Bushell, T J
Zagnoni, M
description Disorders of the central nervous system (CNS) represent a global health challenge and an increased understanding of the CNS in both physiological and pathophysiological states is essential to tackle the problem. Modelling CNS conditions is difficult, as traditional models fail to recapitulate precise microenvironments and animal models of complex disease often have limited translational validity. Microfluidic and organ-on-chip technologies offer an opportunity to develop more physiologically relevant and complex models of the CNS. They can be developed to allow precise cellular patterning and enhanced experimental capabilities to study neuronal function and dysfunction. To improve ease-of-use of the technology and create new opportunities for novel studies, we introduce a modular platform consisting of multiple, individual microfluidic units that can be combined in several configurations to create bespoke culture environments. Here, we report proof-of-concept experiments creating complex models and performing functional analysis of neuronal activity across modular interfaces. This platform technology presents an opportunity to increase our understanding of CNS disease mechanisms and ultimately aid the development of novel therapies.
doi_str_mv 10.1039/d2lc00115b
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2655102674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655102674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-be7adc295741997d72d2e4386d35f9bffdbb5bae4fd0628a7afdd85dab959f5b3</originalsourceid><addsrcrecordid>eNpdkMtKxDAUhoMojo5ufAAJuBFhtEmatFmO4xUG3Oi65Aod0qYmjejbm7k4C1f_gfOdn8MHwAUqblFB-J3GThUFQlQegBNUVmRWoJof7mdeTcBpjKvM0JLVx2BCcjJCyAlQc9h5nZwIsGtV8NalVrcKDk6M1ocOjh6aXkhnoPLd4Mw3FL2GKsXRd23cLNoefrVj8Osm4yLMd7A3KfioWtMrcwaOrHDRnO9yCj6eHt8XL7Pl2_PrYr6cKVyjcSZNJbTCnFYl4rzSFdbYlKRmmlDLpbVaSiqFKa0uGK5FJazWNdVCcsotlWQKrre9Q_CfycSxyR8q45zojU-xwYxSVGBWlRm9-oeufAp9_i5TjGJEGeOZutlSWUyMwdhmCG0nwk-DimatvnnAy8VG_X2GL3eVSXZG79E_1-QXUJWAMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665215669</pqid></control><display><type>article</type><title>A modular microfluidic platform to enable complex and customisable in vitro models for neuroscience</title><source>Royal Society of Chemistry</source><creator>Megarity, D ; Vroman, R ; Kriek, M ; Downey, P ; Bushell, T J ; Zagnoni, M</creator><creatorcontrib>Megarity, D ; Vroman, R ; Kriek, M ; Downey, P ; Bushell, T J ; Zagnoni, M</creatorcontrib><description>Disorders of the central nervous system (CNS) represent a global health challenge and an increased understanding of the CNS in both physiological and pathophysiological states is essential to tackle the problem. Modelling CNS conditions is difficult, as traditional models fail to recapitulate precise microenvironments and animal models of complex disease often have limited translational validity. Microfluidic and organ-on-chip technologies offer an opportunity to develop more physiologically relevant and complex models of the CNS. They can be developed to allow precise cellular patterning and enhanced experimental capabilities to study neuronal function and dysfunction. To improve ease-of-use of the technology and create new opportunities for novel studies, we introduce a modular platform consisting of multiple, individual microfluidic units that can be combined in several configurations to create bespoke culture environments. Here, we report proof-of-concept experiments creating complex models and performing functional analysis of neuronal activity across modular interfaces. This platform technology presents an opportunity to increase our understanding of CNS disease mechanisms and ultimately aid the development of novel therapies.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d2lc00115b</identifier><identifier>PMID: 35466333</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Central nervous system ; Functional analysis ; Microfluidics ; Public health</subject><ispartof>Lab on a chip, 2022-05, Vol.22 (10), p.1989-2000</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-be7adc295741997d72d2e4386d35f9bffdbb5bae4fd0628a7afdd85dab959f5b3</citedby><cites>FETCH-LOGICAL-c281t-be7adc295741997d72d2e4386d35f9bffdbb5bae4fd0628a7afdd85dab959f5b3</cites><orcidid>0000-0002-9347-3442 ; 0000-0003-3198-9491 ; 0000-0003-4871-0389 ; 0000-0003-4145-9670</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35466333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Megarity, D</creatorcontrib><creatorcontrib>Vroman, R</creatorcontrib><creatorcontrib>Kriek, M</creatorcontrib><creatorcontrib>Downey, P</creatorcontrib><creatorcontrib>Bushell, T J</creatorcontrib><creatorcontrib>Zagnoni, M</creatorcontrib><title>A modular microfluidic platform to enable complex and customisable in vitro models for neuroscience</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Disorders of the central nervous system (CNS) represent a global health challenge and an increased understanding of the CNS in both physiological and pathophysiological states is essential to tackle the problem. Modelling CNS conditions is difficult, as traditional models fail to recapitulate precise microenvironments and animal models of complex disease often have limited translational validity. Microfluidic and organ-on-chip technologies offer an opportunity to develop more physiologically relevant and complex models of the CNS. They can be developed to allow precise cellular patterning and enhanced experimental capabilities to study neuronal function and dysfunction. To improve ease-of-use of the technology and create new opportunities for novel studies, we introduce a modular platform consisting of multiple, individual microfluidic units that can be combined in several configurations to create bespoke culture environments. Here, we report proof-of-concept experiments creating complex models and performing functional analysis of neuronal activity across modular interfaces. This platform technology presents an opportunity to increase our understanding of CNS disease mechanisms and ultimately aid the development of novel therapies.</description><subject>Central nervous system</subject><subject>Functional analysis</subject><subject>Microfluidics</subject><subject>Public health</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkMtKxDAUhoMojo5ufAAJuBFhtEmatFmO4xUG3Oi65Aod0qYmjejbm7k4C1f_gfOdn8MHwAUqblFB-J3GThUFQlQegBNUVmRWoJof7mdeTcBpjKvM0JLVx2BCcjJCyAlQc9h5nZwIsGtV8NalVrcKDk6M1ocOjh6aXkhnoPLd4Mw3FL2GKsXRd23cLNoefrVj8Osm4yLMd7A3KfioWtMrcwaOrHDRnO9yCj6eHt8XL7Pl2_PrYr6cKVyjcSZNJbTCnFYl4rzSFdbYlKRmmlDLpbVaSiqFKa0uGK5FJazWNdVCcsotlWQKrre9Q_CfycSxyR8q45zojU-xwYxSVGBWlRm9-oeufAp9_i5TjGJEGeOZutlSWUyMwdhmCG0nwk-DimatvnnAy8VG_X2GL3eVSXZG79E_1-QXUJWAMw</recordid><startdate>20220517</startdate><enddate>20220517</enddate><creator>Megarity, D</creator><creator>Vroman, R</creator><creator>Kriek, M</creator><creator>Downey, P</creator><creator>Bushell, T J</creator><creator>Zagnoni, M</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9347-3442</orcidid><orcidid>https://orcid.org/0000-0003-3198-9491</orcidid><orcidid>https://orcid.org/0000-0003-4871-0389</orcidid><orcidid>https://orcid.org/0000-0003-4145-9670</orcidid></search><sort><creationdate>20220517</creationdate><title>A modular microfluidic platform to enable complex and customisable in vitro models for neuroscience</title><author>Megarity, D ; Vroman, R ; Kriek, M ; Downey, P ; Bushell, T J ; Zagnoni, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-be7adc295741997d72d2e4386d35f9bffdbb5bae4fd0628a7afdd85dab959f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Central nervous system</topic><topic>Functional analysis</topic><topic>Microfluidics</topic><topic>Public health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Megarity, D</creatorcontrib><creatorcontrib>Vroman, R</creatorcontrib><creatorcontrib>Kriek, M</creatorcontrib><creatorcontrib>Downey, P</creatorcontrib><creatorcontrib>Bushell, T J</creatorcontrib><creatorcontrib>Zagnoni, M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Megarity, D</au><au>Vroman, R</au><au>Kriek, M</au><au>Downey, P</au><au>Bushell, T J</au><au>Zagnoni, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modular microfluidic platform to enable complex and customisable in vitro models for neuroscience</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2022-05-17</date><risdate>2022</risdate><volume>22</volume><issue>10</issue><spage>1989</spage><epage>2000</epage><pages>1989-2000</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Disorders of the central nervous system (CNS) represent a global health challenge and an increased understanding of the CNS in both physiological and pathophysiological states is essential to tackle the problem. Modelling CNS conditions is difficult, as traditional models fail to recapitulate precise microenvironments and animal models of complex disease often have limited translational validity. Microfluidic and organ-on-chip technologies offer an opportunity to develop more physiologically relevant and complex models of the CNS. They can be developed to allow precise cellular patterning and enhanced experimental capabilities to study neuronal function and dysfunction. To improve ease-of-use of the technology and create new opportunities for novel studies, we introduce a modular platform consisting of multiple, individual microfluidic units that can be combined in several configurations to create bespoke culture environments. Here, we report proof-of-concept experiments creating complex models and performing functional analysis of neuronal activity across modular interfaces. This platform technology presents an opportunity to increase our understanding of CNS disease mechanisms and ultimately aid the development of novel therapies.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35466333</pmid><doi>10.1039/d2lc00115b</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9347-3442</orcidid><orcidid>https://orcid.org/0000-0003-3198-9491</orcidid><orcidid>https://orcid.org/0000-0003-4871-0389</orcidid><orcidid>https://orcid.org/0000-0003-4145-9670</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2022-05, Vol.22 (10), p.1989-2000
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_2655102674
source Royal Society of Chemistry
subjects Central nervous system
Functional analysis
Microfluidics
Public health
title A modular microfluidic platform to enable complex and customisable in vitro models for neuroscience
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A49%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modular%20microfluidic%20platform%20to%20enable%20complex%20and%20customisable%20in%20vitro%20models%20for%20neuroscience&rft.jtitle=Lab%20on%20a%20chip&rft.au=Megarity,%20D&rft.date=2022-05-17&rft.volume=22&rft.issue=10&rft.spage=1989&rft.epage=2000&rft.pages=1989-2000&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d2lc00115b&rft_dat=%3Cproquest_cross%3E2655102674%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-be7adc295741997d72d2e4386d35f9bffdbb5bae4fd0628a7afdd85dab959f5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2665215669&rft_id=info:pmid/35466333&rfr_iscdi=true