Loading…

Metabolomics analysis of salt tolerance of Zygosaccharomyces rouxii and guided exogenous fatty acid addition for improved salt tolerance

BACKGROUND Zygosaccharomyces rouxii plays an irreplaceable role in the manufacture of traditional fermented foods, which are produced in a high‐salt environment. However, there is little research on strategies for improving salt tolerance of Z. rouxii. RESULTS In this study, metabolomics was used to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the science of food and agriculture 2022-11, Vol.102 (14), p.6263-6272
Main Authors: Wang, Dingkang, Mi, Ting, Huang, Jun, Zhou, Rongqing, Jin, Yao, Wu, Chongde
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2875-66474c922ccea89324f238700ccd0e92f1644df24981a8c5b859d19e7bde19663
cites cdi_FETCH-LOGICAL-c2875-66474c922ccea89324f238700ccd0e92f1644df24981a8c5b859d19e7bde19663
container_end_page 6272
container_issue 14
container_start_page 6263
container_title Journal of the science of food and agriculture
container_volume 102
creator Wang, Dingkang
Mi, Ting
Huang, Jun
Zhou, Rongqing
Jin, Yao
Wu, Chongde
description BACKGROUND Zygosaccharomyces rouxii plays an irreplaceable role in the manufacture of traditional fermented foods, which are produced in a high‐salt environment. However, there is little research on strategies for improving salt tolerance of Z. rouxii. RESULTS In this study, metabolomics was used to reveal the changes in intracellular metabolites under salt stress, and the results show that most of the carbohydrate contents decreased, the contents of xanthohumol and glycerol increased (fold change 4.07 and 5.35, respectively), while the contents of galactinol, xylitol and d‐threitol decreased (fold change −9.43, −5.83 and −3.59, respectively). In addition, the content of four amino acids and six organic acids decreased, while that of the ten nucleotides increased. Notably, except for stearic acid (C18:0), all fatty acid contents increased. Guided by the metabolomics results, the effect of addition of seven exogenous fatty acids (C12:0, C14:0, C16:0, C18:0, C16:1, C18:1, and C18:2) on the salt tolerance of Z. rouxii was analyzed, and the results suggested that four exogenous fatty acids (C12:0, C16:0, C16:1, and C18:1) can increase the biomass yield and maximum growth rate. Physiological analyses demonstrated that exogenous fatty acids could regulate the distribution of fatty acids in the cell membrane, increase the degree of unsaturation, improve membrane fluidity, and maintain cell integrity, morphology and surface roughness. CONCLUSION These results are applicable to revealing the metabolic mechanisms of Z. rouxii under salt stress and screening potential protective agents to improve stress resistance by adding exogenous fatty acids. © 2022 Society of Chemical Industry.
doi_str_mv 10.1002/jsfa.11975
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2660102402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660102402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2875-66474c922ccea89324f238700ccd0e92f1644df24981a8c5b859d19e7bde19663</originalsourceid><addsrcrecordid>eNp9kc9O3DAQhy1UBMufCw9QWeqlQspiO3YcHxEq0ArEAbhwibz2eOtVEoOdtOQN-th4u9tK9NCTJfubzzPzQ-iEkjklhJ2tktNzSpUUO2hGiZIFIZR8QLP8yApBOdtHBymtCCFKVdUe2i-FoKSkdIZ-3cKgF6ENnTcJ6163U_IJB4eTbgc8hBai7g2sb56mZUjamO86hm4ykHAM46v3uczi5egtWAyvYQl9GBN2ehgmrI23WFvrBx967ELEvnuO4UdG339whHadbhMcb89D9Hj55eHiuri5u_p6cX5TGFZLUVQVl9woxowBXauSccfKWhJijCWgmKMV59YxrmqqayMWtVCWKpALCzQPXx6izxtv7uJlhDQ0nU8G2lb3kNtuWFXl5TFOWEY__YOuwhjzijIls4wLIWWmTjeUiSGlCK55jr7TcWooadb5NOt8mt_5ZPjjVjkuOrB_0T-BZIBugJ--hek_qubb_eX5RvoGXQqcfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719645577</pqid></control><display><type>article</type><title>Metabolomics analysis of salt tolerance of Zygosaccharomyces rouxii and guided exogenous fatty acid addition for improved salt tolerance</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wang, Dingkang ; Mi, Ting ; Huang, Jun ; Zhou, Rongqing ; Jin, Yao ; Wu, Chongde</creator><creatorcontrib>Wang, Dingkang ; Mi, Ting ; Huang, Jun ; Zhou, Rongqing ; Jin, Yao ; Wu, Chongde</creatorcontrib><description>BACKGROUND Zygosaccharomyces rouxii plays an irreplaceable role in the manufacture of traditional fermented foods, which are produced in a high‐salt environment. However, there is little research on strategies for improving salt tolerance of Z. rouxii. RESULTS In this study, metabolomics was used to reveal the changes in intracellular metabolites under salt stress, and the results show that most of the carbohydrate contents decreased, the contents of xanthohumol and glycerol increased (fold change 4.07 and 5.35, respectively), while the contents of galactinol, xylitol and d‐threitol decreased (fold change −9.43, −5.83 and −3.59, respectively). In addition, the content of four amino acids and six organic acids decreased, while that of the ten nucleotides increased. Notably, except for stearic acid (C18:0), all fatty acid contents increased. Guided by the metabolomics results, the effect of addition of seven exogenous fatty acids (C12:0, C14:0, C16:0, C18:0, C16:1, C18:1, and C18:2) on the salt tolerance of Z. rouxii was analyzed, and the results suggested that four exogenous fatty acids (C12:0, C16:0, C16:1, and C18:1) can increase the biomass yield and maximum growth rate. Physiological analyses demonstrated that exogenous fatty acids could regulate the distribution of fatty acids in the cell membrane, increase the degree of unsaturation, improve membrane fluidity, and maintain cell integrity, morphology and surface roughness. CONCLUSION These results are applicable to revealing the metabolic mechanisms of Z. rouxii under salt stress and screening potential protective agents to improve stress resistance by adding exogenous fatty acids. © 2022 Society of Chemical Industry.</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.11975</identifier><identifier>PMID: 35510311</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Abiotic stress ; Amino acids ; Carbohydrates ; Cell membranes ; cell morphology ; Cytology ; Fatty acids ; Fermented food ; Fluidity ; Glycerol ; Growth rate ; intracellular metabolites ; Membrane fluidity ; Metabolites ; Metabolomics ; Nucleotides ; Organic acids ; Salinity tolerance ; Salt tolerance ; Stearic acid ; Surface roughness ; Traditional foods ; Xanthohumol ; Xylitol ; Zygosaccharomyces rouxii</subject><ispartof>Journal of the science of food and agriculture, 2022-11, Vol.102 (14), p.6263-6272</ispartof><rights>2022 Society of Chemical Industry.</rights><rights>Copyright © 2022 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2875-66474c922ccea89324f238700ccd0e92f1644df24981a8c5b859d19e7bde19663</citedby><cites>FETCH-LOGICAL-c2875-66474c922ccea89324f238700ccd0e92f1644df24981a8c5b859d19e7bde19663</cites><orcidid>0000-0001-5896-3086 ; 0000-0002-7964-7856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35510311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Dingkang</creatorcontrib><creatorcontrib>Mi, Ting</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Zhou, Rongqing</creatorcontrib><creatorcontrib>Jin, Yao</creatorcontrib><creatorcontrib>Wu, Chongde</creatorcontrib><title>Metabolomics analysis of salt tolerance of Zygosaccharomyces rouxii and guided exogenous fatty acid addition for improved salt tolerance</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND Zygosaccharomyces rouxii plays an irreplaceable role in the manufacture of traditional fermented foods, which are produced in a high‐salt environment. However, there is little research on strategies for improving salt tolerance of Z. rouxii. RESULTS In this study, metabolomics was used to reveal the changes in intracellular metabolites under salt stress, and the results show that most of the carbohydrate contents decreased, the contents of xanthohumol and glycerol increased (fold change 4.07 and 5.35, respectively), while the contents of galactinol, xylitol and d‐threitol decreased (fold change −9.43, −5.83 and −3.59, respectively). In addition, the content of four amino acids and six organic acids decreased, while that of the ten nucleotides increased. Notably, except for stearic acid (C18:0), all fatty acid contents increased. Guided by the metabolomics results, the effect of addition of seven exogenous fatty acids (C12:0, C14:0, C16:0, C18:0, C16:1, C18:1, and C18:2) on the salt tolerance of Z. rouxii was analyzed, and the results suggested that four exogenous fatty acids (C12:0, C16:0, C16:1, and C18:1) can increase the biomass yield and maximum growth rate. Physiological analyses demonstrated that exogenous fatty acids could regulate the distribution of fatty acids in the cell membrane, increase the degree of unsaturation, improve membrane fluidity, and maintain cell integrity, morphology and surface roughness. CONCLUSION These results are applicable to revealing the metabolic mechanisms of Z. rouxii under salt stress and screening potential protective agents to improve stress resistance by adding exogenous fatty acids. © 2022 Society of Chemical Industry.</description><subject>Abiotic stress</subject><subject>Amino acids</subject><subject>Carbohydrates</subject><subject>Cell membranes</subject><subject>cell morphology</subject><subject>Cytology</subject><subject>Fatty acids</subject><subject>Fermented food</subject><subject>Fluidity</subject><subject>Glycerol</subject><subject>Growth rate</subject><subject>intracellular metabolites</subject><subject>Membrane fluidity</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Nucleotides</subject><subject>Organic acids</subject><subject>Salinity tolerance</subject><subject>Salt tolerance</subject><subject>Stearic acid</subject><subject>Surface roughness</subject><subject>Traditional foods</subject><subject>Xanthohumol</subject><subject>Xylitol</subject><subject>Zygosaccharomyces rouxii</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc9O3DAQhy1UBMufCw9QWeqlQspiO3YcHxEq0ArEAbhwibz2eOtVEoOdtOQN-th4u9tK9NCTJfubzzPzQ-iEkjklhJ2tktNzSpUUO2hGiZIFIZR8QLP8yApBOdtHBymtCCFKVdUe2i-FoKSkdIZ-3cKgF6ENnTcJ6163U_IJB4eTbgc8hBai7g2sb56mZUjamO86hm4ykHAM46v3uczi5egtWAyvYQl9GBN2ehgmrI23WFvrBx967ELEvnuO4UdG339whHadbhMcb89D9Hj55eHiuri5u_p6cX5TGFZLUVQVl9woxowBXauSccfKWhJijCWgmKMV59YxrmqqayMWtVCWKpALCzQPXx6izxtv7uJlhDQ0nU8G2lb3kNtuWFXl5TFOWEY__YOuwhjzijIls4wLIWWmTjeUiSGlCK55jr7TcWooadb5NOt8mt_5ZPjjVjkuOrB_0T-BZIBugJ--hek_qubb_eX5RvoGXQqcfA</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Wang, Dingkang</creator><creator>Mi, Ting</creator><creator>Huang, Jun</creator><creator>Zhou, Rongqing</creator><creator>Jin, Yao</creator><creator>Wu, Chongde</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5896-3086</orcidid><orcidid>https://orcid.org/0000-0002-7964-7856</orcidid></search><sort><creationdate>202211</creationdate><title>Metabolomics analysis of salt tolerance of Zygosaccharomyces rouxii and guided exogenous fatty acid addition for improved salt tolerance</title><author>Wang, Dingkang ; Mi, Ting ; Huang, Jun ; Zhou, Rongqing ; Jin, Yao ; Wu, Chongde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2875-66474c922ccea89324f238700ccd0e92f1644df24981a8c5b859d19e7bde19663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abiotic stress</topic><topic>Amino acids</topic><topic>Carbohydrates</topic><topic>Cell membranes</topic><topic>cell morphology</topic><topic>Cytology</topic><topic>Fatty acids</topic><topic>Fermented food</topic><topic>Fluidity</topic><topic>Glycerol</topic><topic>Growth rate</topic><topic>intracellular metabolites</topic><topic>Membrane fluidity</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Nucleotides</topic><topic>Organic acids</topic><topic>Salinity tolerance</topic><topic>Salt tolerance</topic><topic>Stearic acid</topic><topic>Surface roughness</topic><topic>Traditional foods</topic><topic>Xanthohumol</topic><topic>Xylitol</topic><topic>Zygosaccharomyces rouxii</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dingkang</creatorcontrib><creatorcontrib>Mi, Ting</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Zhou, Rongqing</creatorcontrib><creatorcontrib>Jin, Yao</creatorcontrib><creatorcontrib>Wu, Chongde</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dingkang</au><au>Mi, Ting</au><au>Huang, Jun</au><au>Zhou, Rongqing</au><au>Jin, Yao</au><au>Wu, Chongde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolomics analysis of salt tolerance of Zygosaccharomyces rouxii and guided exogenous fatty acid addition for improved salt tolerance</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2022-11</date><risdate>2022</risdate><volume>102</volume><issue>14</issue><spage>6263</spage><epage>6272</epage><pages>6263-6272</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND Zygosaccharomyces rouxii plays an irreplaceable role in the manufacture of traditional fermented foods, which are produced in a high‐salt environment. However, there is little research on strategies for improving salt tolerance of Z. rouxii. RESULTS In this study, metabolomics was used to reveal the changes in intracellular metabolites under salt stress, and the results show that most of the carbohydrate contents decreased, the contents of xanthohumol and glycerol increased (fold change 4.07 and 5.35, respectively), while the contents of galactinol, xylitol and d‐threitol decreased (fold change −9.43, −5.83 and −3.59, respectively). In addition, the content of four amino acids and six organic acids decreased, while that of the ten nucleotides increased. Notably, except for stearic acid (C18:0), all fatty acid contents increased. Guided by the metabolomics results, the effect of addition of seven exogenous fatty acids (C12:0, C14:0, C16:0, C18:0, C16:1, C18:1, and C18:2) on the salt tolerance of Z. rouxii was analyzed, and the results suggested that four exogenous fatty acids (C12:0, C16:0, C16:1, and C18:1) can increase the biomass yield and maximum growth rate. Physiological analyses demonstrated that exogenous fatty acids could regulate the distribution of fatty acids in the cell membrane, increase the degree of unsaturation, improve membrane fluidity, and maintain cell integrity, morphology and surface roughness. CONCLUSION These results are applicable to revealing the metabolic mechanisms of Z. rouxii under salt stress and screening potential protective agents to improve stress resistance by adding exogenous fatty acids. © 2022 Society of Chemical Industry.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>35510311</pmid><doi>10.1002/jsfa.11975</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5896-3086</orcidid><orcidid>https://orcid.org/0000-0002-7964-7856</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-5142
ispartof Journal of the science of food and agriculture, 2022-11, Vol.102 (14), p.6263-6272
issn 0022-5142
1097-0010
language eng
recordid cdi_proquest_miscellaneous_2660102402
source Wiley-Blackwell Read & Publish Collection
subjects Abiotic stress
Amino acids
Carbohydrates
Cell membranes
cell morphology
Cytology
Fatty acids
Fermented food
Fluidity
Glycerol
Growth rate
intracellular metabolites
Membrane fluidity
Metabolites
Metabolomics
Nucleotides
Organic acids
Salinity tolerance
Salt tolerance
Stearic acid
Surface roughness
Traditional foods
Xanthohumol
Xylitol
Zygosaccharomyces rouxii
title Metabolomics analysis of salt tolerance of Zygosaccharomyces rouxii and guided exogenous fatty acid addition for improved salt tolerance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolomics%20analysis%20of%20salt%20tolerance%20of%20Zygosaccharomyces%20rouxii%20and%20guided%20exogenous%20fatty%20acid%20addition%20for%20improved%20salt%20tolerance&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Wang,%20Dingkang&rft.date=2022-11&rft.volume=102&rft.issue=14&rft.spage=6263&rft.epage=6272&rft.pages=6263-6272&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.11975&rft_dat=%3Cproquest_cross%3E2660102402%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2875-66474c922ccea89324f238700ccd0e92f1644df24981a8c5b859d19e7bde19663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2719645577&rft_id=info:pmid/35510311&rfr_iscdi=true