Loading…
Metabolomics analysis of salt tolerance of Zygosaccharomyces rouxii and guided exogenous fatty acid addition for improved salt tolerance
BACKGROUND Zygosaccharomyces rouxii plays an irreplaceable role in the manufacture of traditional fermented foods, which are produced in a high‐salt environment. However, there is little research on strategies for improving salt tolerance of Z. rouxii. RESULTS In this study, metabolomics was used to...
Saved in:
Published in: | Journal of the science of food and agriculture 2022-11, Vol.102 (14), p.6263-6272 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2875-66474c922ccea89324f238700ccd0e92f1644df24981a8c5b859d19e7bde19663 |
---|---|
cites | cdi_FETCH-LOGICAL-c2875-66474c922ccea89324f238700ccd0e92f1644df24981a8c5b859d19e7bde19663 |
container_end_page | 6272 |
container_issue | 14 |
container_start_page | 6263 |
container_title | Journal of the science of food and agriculture |
container_volume | 102 |
creator | Wang, Dingkang Mi, Ting Huang, Jun Zhou, Rongqing Jin, Yao Wu, Chongde |
description | BACKGROUND
Zygosaccharomyces rouxii plays an irreplaceable role in the manufacture of traditional fermented foods, which are produced in a high‐salt environment. However, there is little research on strategies for improving salt tolerance of Z. rouxii.
RESULTS
In this study, metabolomics was used to reveal the changes in intracellular metabolites under salt stress, and the results show that most of the carbohydrate contents decreased, the contents of xanthohumol and glycerol increased (fold change 4.07 and 5.35, respectively), while the contents of galactinol, xylitol and d‐threitol decreased (fold change −9.43, −5.83 and −3.59, respectively). In addition, the content of four amino acids and six organic acids decreased, while that of the ten nucleotides increased. Notably, except for stearic acid (C18:0), all fatty acid contents increased. Guided by the metabolomics results, the effect of addition of seven exogenous fatty acids (C12:0, C14:0, C16:0, C18:0, C16:1, C18:1, and C18:2) on the salt tolerance of Z. rouxii was analyzed, and the results suggested that four exogenous fatty acids (C12:0, C16:0, C16:1, and C18:1) can increase the biomass yield and maximum growth rate. Physiological analyses demonstrated that exogenous fatty acids could regulate the distribution of fatty acids in the cell membrane, increase the degree of unsaturation, improve membrane fluidity, and maintain cell integrity, morphology and surface roughness.
CONCLUSION
These results are applicable to revealing the metabolic mechanisms of Z. rouxii under salt stress and screening potential protective agents to improve stress resistance by adding exogenous fatty acids. © 2022 Society of Chemical Industry. |
doi_str_mv | 10.1002/jsfa.11975 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2660102402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660102402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2875-66474c922ccea89324f238700ccd0e92f1644df24981a8c5b859d19e7bde19663</originalsourceid><addsrcrecordid>eNp9kc9O3DAQhy1UBMufCw9QWeqlQspiO3YcHxEq0ArEAbhwibz2eOtVEoOdtOQN-th4u9tK9NCTJfubzzPzQ-iEkjklhJ2tktNzSpUUO2hGiZIFIZR8QLP8yApBOdtHBymtCCFKVdUe2i-FoKSkdIZ-3cKgF6ENnTcJ6163U_IJB4eTbgc8hBai7g2sb56mZUjamO86hm4ykHAM46v3uczi5egtWAyvYQl9GBN2ehgmrI23WFvrBx967ELEvnuO4UdG339whHadbhMcb89D9Hj55eHiuri5u_p6cX5TGFZLUVQVl9woxowBXauSccfKWhJijCWgmKMV59YxrmqqayMWtVCWKpALCzQPXx6izxtv7uJlhDQ0nU8G2lb3kNtuWFXl5TFOWEY__YOuwhjzijIls4wLIWWmTjeUiSGlCK55jr7TcWooadb5NOt8mt_5ZPjjVjkuOrB_0T-BZIBugJ--hek_qubb_eX5RvoGXQqcfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719645577</pqid></control><display><type>article</type><title>Metabolomics analysis of salt tolerance of Zygosaccharomyces rouxii and guided exogenous fatty acid addition for improved salt tolerance</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wang, Dingkang ; Mi, Ting ; Huang, Jun ; Zhou, Rongqing ; Jin, Yao ; Wu, Chongde</creator><creatorcontrib>Wang, Dingkang ; Mi, Ting ; Huang, Jun ; Zhou, Rongqing ; Jin, Yao ; Wu, Chongde</creatorcontrib><description>BACKGROUND
Zygosaccharomyces rouxii plays an irreplaceable role in the manufacture of traditional fermented foods, which are produced in a high‐salt environment. However, there is little research on strategies for improving salt tolerance of Z. rouxii.
RESULTS
In this study, metabolomics was used to reveal the changes in intracellular metabolites under salt stress, and the results show that most of the carbohydrate contents decreased, the contents of xanthohumol and glycerol increased (fold change 4.07 and 5.35, respectively), while the contents of galactinol, xylitol and d‐threitol decreased (fold change −9.43, −5.83 and −3.59, respectively). In addition, the content of four amino acids and six organic acids decreased, while that of the ten nucleotides increased. Notably, except for stearic acid (C18:0), all fatty acid contents increased. Guided by the metabolomics results, the effect of addition of seven exogenous fatty acids (C12:0, C14:0, C16:0, C18:0, C16:1, C18:1, and C18:2) on the salt tolerance of Z. rouxii was analyzed, and the results suggested that four exogenous fatty acids (C12:0, C16:0, C16:1, and C18:1) can increase the biomass yield and maximum growth rate. Physiological analyses demonstrated that exogenous fatty acids could regulate the distribution of fatty acids in the cell membrane, increase the degree of unsaturation, improve membrane fluidity, and maintain cell integrity, morphology and surface roughness.
CONCLUSION
These results are applicable to revealing the metabolic mechanisms of Z. rouxii under salt stress and screening potential protective agents to improve stress resistance by adding exogenous fatty acids. © 2022 Society of Chemical Industry.</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.11975</identifier><identifier>PMID: 35510311</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Abiotic stress ; Amino acids ; Carbohydrates ; Cell membranes ; cell morphology ; Cytology ; Fatty acids ; Fermented food ; Fluidity ; Glycerol ; Growth rate ; intracellular metabolites ; Membrane fluidity ; Metabolites ; Metabolomics ; Nucleotides ; Organic acids ; Salinity tolerance ; Salt tolerance ; Stearic acid ; Surface roughness ; Traditional foods ; Xanthohumol ; Xylitol ; Zygosaccharomyces rouxii</subject><ispartof>Journal of the science of food and agriculture, 2022-11, Vol.102 (14), p.6263-6272</ispartof><rights>2022 Society of Chemical Industry.</rights><rights>Copyright © 2022 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2875-66474c922ccea89324f238700ccd0e92f1644df24981a8c5b859d19e7bde19663</citedby><cites>FETCH-LOGICAL-c2875-66474c922ccea89324f238700ccd0e92f1644df24981a8c5b859d19e7bde19663</cites><orcidid>0000-0001-5896-3086 ; 0000-0002-7964-7856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35510311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Dingkang</creatorcontrib><creatorcontrib>Mi, Ting</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Zhou, Rongqing</creatorcontrib><creatorcontrib>Jin, Yao</creatorcontrib><creatorcontrib>Wu, Chongde</creatorcontrib><title>Metabolomics analysis of salt tolerance of Zygosaccharomyces rouxii and guided exogenous fatty acid addition for improved salt tolerance</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND
Zygosaccharomyces rouxii plays an irreplaceable role in the manufacture of traditional fermented foods, which are produced in a high‐salt environment. However, there is little research on strategies for improving salt tolerance of Z. rouxii.
RESULTS
In this study, metabolomics was used to reveal the changes in intracellular metabolites under salt stress, and the results show that most of the carbohydrate contents decreased, the contents of xanthohumol and glycerol increased (fold change 4.07 and 5.35, respectively), while the contents of galactinol, xylitol and d‐threitol decreased (fold change −9.43, −5.83 and −3.59, respectively). In addition, the content of four amino acids and six organic acids decreased, while that of the ten nucleotides increased. Notably, except for stearic acid (C18:0), all fatty acid contents increased. Guided by the metabolomics results, the effect of addition of seven exogenous fatty acids (C12:0, C14:0, C16:0, C18:0, C16:1, C18:1, and C18:2) on the salt tolerance of Z. rouxii was analyzed, and the results suggested that four exogenous fatty acids (C12:0, C16:0, C16:1, and C18:1) can increase the biomass yield and maximum growth rate. Physiological analyses demonstrated that exogenous fatty acids could regulate the distribution of fatty acids in the cell membrane, increase the degree of unsaturation, improve membrane fluidity, and maintain cell integrity, morphology and surface roughness.
CONCLUSION
These results are applicable to revealing the metabolic mechanisms of Z. rouxii under salt stress and screening potential protective agents to improve stress resistance by adding exogenous fatty acids. © 2022 Society of Chemical Industry.</description><subject>Abiotic stress</subject><subject>Amino acids</subject><subject>Carbohydrates</subject><subject>Cell membranes</subject><subject>cell morphology</subject><subject>Cytology</subject><subject>Fatty acids</subject><subject>Fermented food</subject><subject>Fluidity</subject><subject>Glycerol</subject><subject>Growth rate</subject><subject>intracellular metabolites</subject><subject>Membrane fluidity</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Nucleotides</subject><subject>Organic acids</subject><subject>Salinity tolerance</subject><subject>Salt tolerance</subject><subject>Stearic acid</subject><subject>Surface roughness</subject><subject>Traditional foods</subject><subject>Xanthohumol</subject><subject>Xylitol</subject><subject>Zygosaccharomyces rouxii</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc9O3DAQhy1UBMufCw9QWeqlQspiO3YcHxEq0ArEAbhwibz2eOtVEoOdtOQN-th4u9tK9NCTJfubzzPzQ-iEkjklhJ2tktNzSpUUO2hGiZIFIZR8QLP8yApBOdtHBymtCCFKVdUe2i-FoKSkdIZ-3cKgF6ENnTcJ6163U_IJB4eTbgc8hBai7g2sb56mZUjamO86hm4ykHAM46v3uczi5egtWAyvYQl9GBN2ehgmrI23WFvrBx967ELEvnuO4UdG339whHadbhMcb89D9Hj55eHiuri5u_p6cX5TGFZLUVQVl9woxowBXauSccfKWhJijCWgmKMV59YxrmqqayMWtVCWKpALCzQPXx6izxtv7uJlhDQ0nU8G2lb3kNtuWFXl5TFOWEY__YOuwhjzijIls4wLIWWmTjeUiSGlCK55jr7TcWooadb5NOt8mt_5ZPjjVjkuOrB_0T-BZIBugJ--hek_qubb_eX5RvoGXQqcfA</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Wang, Dingkang</creator><creator>Mi, Ting</creator><creator>Huang, Jun</creator><creator>Zhou, Rongqing</creator><creator>Jin, Yao</creator><creator>Wu, Chongde</creator><general>John Wiley & Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5896-3086</orcidid><orcidid>https://orcid.org/0000-0002-7964-7856</orcidid></search><sort><creationdate>202211</creationdate><title>Metabolomics analysis of salt tolerance of Zygosaccharomyces rouxii and guided exogenous fatty acid addition for improved salt tolerance</title><author>Wang, Dingkang ; Mi, Ting ; Huang, Jun ; Zhou, Rongqing ; Jin, Yao ; Wu, Chongde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2875-66474c922ccea89324f238700ccd0e92f1644df24981a8c5b859d19e7bde19663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abiotic stress</topic><topic>Amino acids</topic><topic>Carbohydrates</topic><topic>Cell membranes</topic><topic>cell morphology</topic><topic>Cytology</topic><topic>Fatty acids</topic><topic>Fermented food</topic><topic>Fluidity</topic><topic>Glycerol</topic><topic>Growth rate</topic><topic>intracellular metabolites</topic><topic>Membrane fluidity</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Nucleotides</topic><topic>Organic acids</topic><topic>Salinity tolerance</topic><topic>Salt tolerance</topic><topic>Stearic acid</topic><topic>Surface roughness</topic><topic>Traditional foods</topic><topic>Xanthohumol</topic><topic>Xylitol</topic><topic>Zygosaccharomyces rouxii</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dingkang</creatorcontrib><creatorcontrib>Mi, Ting</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Zhou, Rongqing</creatorcontrib><creatorcontrib>Jin, Yao</creatorcontrib><creatorcontrib>Wu, Chongde</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dingkang</au><au>Mi, Ting</au><au>Huang, Jun</au><au>Zhou, Rongqing</au><au>Jin, Yao</au><au>Wu, Chongde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolomics analysis of salt tolerance of Zygosaccharomyces rouxii and guided exogenous fatty acid addition for improved salt tolerance</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2022-11</date><risdate>2022</risdate><volume>102</volume><issue>14</issue><spage>6263</spage><epage>6272</epage><pages>6263-6272</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND
Zygosaccharomyces rouxii plays an irreplaceable role in the manufacture of traditional fermented foods, which are produced in a high‐salt environment. However, there is little research on strategies for improving salt tolerance of Z. rouxii.
RESULTS
In this study, metabolomics was used to reveal the changes in intracellular metabolites under salt stress, and the results show that most of the carbohydrate contents decreased, the contents of xanthohumol and glycerol increased (fold change 4.07 and 5.35, respectively), while the contents of galactinol, xylitol and d‐threitol decreased (fold change −9.43, −5.83 and −3.59, respectively). In addition, the content of four amino acids and six organic acids decreased, while that of the ten nucleotides increased. Notably, except for stearic acid (C18:0), all fatty acid contents increased. Guided by the metabolomics results, the effect of addition of seven exogenous fatty acids (C12:0, C14:0, C16:0, C18:0, C16:1, C18:1, and C18:2) on the salt tolerance of Z. rouxii was analyzed, and the results suggested that four exogenous fatty acids (C12:0, C16:0, C16:1, and C18:1) can increase the biomass yield and maximum growth rate. Physiological analyses demonstrated that exogenous fatty acids could regulate the distribution of fatty acids in the cell membrane, increase the degree of unsaturation, improve membrane fluidity, and maintain cell integrity, morphology and surface roughness.
CONCLUSION
These results are applicable to revealing the metabolic mechanisms of Z. rouxii under salt stress and screening potential protective agents to improve stress resistance by adding exogenous fatty acids. © 2022 Society of Chemical Industry.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>35510311</pmid><doi>10.1002/jsfa.11975</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5896-3086</orcidid><orcidid>https://orcid.org/0000-0002-7964-7856</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5142 |
ispartof | Journal of the science of food and agriculture, 2022-11, Vol.102 (14), p.6263-6272 |
issn | 0022-5142 1097-0010 |
language | eng |
recordid | cdi_proquest_miscellaneous_2660102402 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Abiotic stress Amino acids Carbohydrates Cell membranes cell morphology Cytology Fatty acids Fermented food Fluidity Glycerol Growth rate intracellular metabolites Membrane fluidity Metabolites Metabolomics Nucleotides Organic acids Salinity tolerance Salt tolerance Stearic acid Surface roughness Traditional foods Xanthohumol Xylitol Zygosaccharomyces rouxii |
title | Metabolomics analysis of salt tolerance of Zygosaccharomyces rouxii and guided exogenous fatty acid addition for improved salt tolerance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolomics%20analysis%20of%20salt%20tolerance%20of%20Zygosaccharomyces%20rouxii%20and%20guided%20exogenous%20fatty%20acid%20addition%20for%20improved%20salt%20tolerance&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Wang,%20Dingkang&rft.date=2022-11&rft.volume=102&rft.issue=14&rft.spage=6263&rft.epage=6272&rft.pages=6263-6272&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.11975&rft_dat=%3Cproquest_cross%3E2660102402%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2875-66474c922ccea89324f238700ccd0e92f1644df24981a8c5b859d19e7bde19663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2719645577&rft_id=info:pmid/35510311&rfr_iscdi=true |