Loading…

Theoretical approach to energy levels applied to modified surfaces

The main objective of this work is to present a new theoretical basis to describe surface deposition on a modified electrode surface. The surface is modified via the irreversible deposition of fixed particles or impurities that can block a fraction of the adsorption sites. An electroactive species w...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2022-05, Vol.24 (2), p.12592-126
Main Authors: Pena-Ausar, J. E, Pinto, O. A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main objective of this work is to present a new theoretical basis to describe surface deposition on a modified electrode surface. The surface is modified via the irreversible deposition of fixed particles or impurities that can block a fraction of the adsorption sites. An electroactive species was allowed to adsorb to the accessible sites and transfer electric charge. Energetics interactions between the electroactive particles and impurities were considered. The theoretical approach of energy levels (TAEL) was presented, through the integral equation formalism, where for its formulation the binomial distribution of energy levels and the standard Langmuir isotherm were considered. Adsorption isotherms and the compressibility of the adsorption layer were compared with Monte Carlo simulations and the recently published modified mean field approach (MMFA). Various conditions were studied: attractive and repulsive lateral interactions, and different quantities of impurities in one- and two-dimensional lattices. The performance of the theoretical approximations was analyzed by calculating an integral error. The main objective of this work is to present a new theoretical basis describe surface deposition on a modified electrode surface.
ISSN:1463-9076
1463-9084
DOI:10.1039/d2cp00932c