Loading…
Metal–Organic Frameworks with Assembled Bifunctional Microreactor for Charge Modulation and Strain Generation toward Enhanced Oxygen Electrocatalysis
Two-dimensional metal–organic frameworks (MOFs) have served as favorable prototypes for electrocatalytic oxygen evolution reaction (OER). Despite promising catalytic activity, their OER reaction kinetics are still limited by the sluggish four-electron transfer process. Herein, we develop a ferrocene...
Saved in:
Published in: | ACS nano 2022-06, Vol.16 (6), p.9523-9534 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two-dimensional metal–organic frameworks (MOFs) have served as favorable prototypes for electrocatalytic oxygen evolution reaction (OER). Despite promising catalytic activity, their OER reaction kinetics are still limited by the sluggish four-electron transfer process. Herein, we develop a ferrocene carboxylic acid (FcCA) partially substituted cobalt-terephthalic acid (CoBDC) catalyst with a bifunctional microreactor composed of two species of Co active sites and ligand FcCA (CoBDC FcCA). Benefiting from the ultrathin nanosheet structure, CoBDC FcCA catalyst exhibits an excellent OER performance with a low overpotential of 280 mV to reach 10 mA cm–2 and a small Tafel slope of 53 mV dec–1. Structure characterization together with theoretical calculations directly unravel the coordination for two species of Co active moieties with FcCA forming a microreactor of tensile strain, leading to a conversion of the Co spin from a high spin state (t2g 5eg 2) to an intermediate spin state (t2g 6eg 1) to regulate antibonding states of Co 3d and O 2p orbital. In situ spectroscopic measurements for mechanistic understanding reveal that this CoBDC FcCA catalyst possesses an optimal OH* adsorption energy for propitious formation of O–O bonds in the OOH* intermediate, thus effectively decreasing the thermodynamic Gibbs free energy of the rate-determining step (O* → OOH*) to accelerate reaction kinetics for the whole OER process. When loaded on an integrated BiVO4 photoanode as a cocatalyst, CoBDC FcCA enables highly active solar-driven oxygen production from water splitting. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.2c02685 |