Loading…
Biosynthesis of Piperazine-Derived Diazabicyclic Alkaloids Involves a Nonribosomal Peptide Synthetase and Subsequent Tailoring by a Multifunctional Cytochrome P450 Enzyme
Piperazine-derived diazabicycles are privileged structures found in natural products and synthetic chemical entities, including therapeutic agents. Herein, we deciphered the biosynthesis of two unique classes of diazabicyclic alkaloids, fischerazines A–C. Notably, we characterized a multifunctional...
Saved in:
Published in: | Organic letters 2022-06, Vol.24 (22), p.4064-4069 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Piperazine-derived diazabicycles are privileged structures found in natural products and synthetic chemical entities, including therapeutic agents. Herein, we deciphered the biosynthesis of two unique classes of diazabicyclic alkaloids, fischerazines A–C. Notably, we characterized a multifunctional P450 monooxygenase NfiC that installs ortho-dihydroxyl groups on the dibenzyl-piperazines, in turn triggering a range of NfiC-catalyzed and spontaneous cyclization events. |
---|---|
ISSN: | 1523-7060 1523-7052 |
DOI: | 10.1021/acs.orglett.2c01516 |