Loading…

Highly Dispersed Co‑, N‑, S‑Doped Topological Defect-Rich Hollow Carbon Nanoboxes as Superior Bifunctional Oxygen Electrocatalysts for Rechargeable Zn–Air Batteries

Rechargeable Zn–air batteries have received extensive attention due to their use of nontoxic materials, safety, and high energy density. However, the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air electrode of Zn–air batteries both suffer from slow kinetics, limiting...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2022-06, Vol.14 (22), p.25427-25438
Main Authors: Wang, Mingwen, Cao, Lei, Du, Xi, Zhang, Ye, Jin, Feibao, Zhang, Maliang, Li, Zhenhuan, Su, Kunmei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rechargeable Zn–air batteries have received extensive attention due to their use of nontoxic materials, safety, and high energy density. However, the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air electrode of Zn–air batteries both suffer from slow kinetics, limiting their commercialization development. Herein, we prepared Co, N, and S co-doped hollow carbon nanoboxes (Co–N/S-CNBs) rich in topological defects using polyphenylene sulfide (PPS) as a sulfur-rich carbon source. Critically, by utilizing the self-propagating high-temperature synthesis (SHS), PPS can avoid melting, while simultaneously enabling the catalyst to take on a unique hollow structure. Additional post-treatment to introduce Co and N atoms as active centers further increases the defect sites and microporous structures of the catalyst. Under alkaline electrolytes, the Co–N/S-CNBs enabled Zn–air batteries to exhibit excellent bifunctional catalytic activity for both ORR and OER, surpassing commercial catalysts. Chemical analysis showed that the cracking loss of small molecules from PPS during pyrolysis is the main reason for the formation of topological defects, where the defect sites act as active centers to enhance the catalytic performance. Overall, this work provides new insights into the mechanism of how defects are formed in such a catalyst, as well as shows how a high-performance bifunctional electrocatalyst can be utilized for practical Zn–air batteries.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c04030