Loading…

Comprehensive binary interaction mapping of τ phosphotyrosine sites with SH2 domains in the human genome: Implications for the rational design of self-inhibitory phosphopeptides to target τ hyperphosphorylation signaling in Alzheimer’s Disease

Human microtubule-associated protein Tau (τ) is abundant in the axons of neurons where it stabilizes microtubule bundles; abnormally hyperphosphorylated τ is a hallmark of Alzheimer’s disease (AD) and related tauopathies. The hyperphosphorylation events can be recognized by phosphotyrosine-recogniti...

Full description

Saved in:
Bibliographic Details
Published in:Amino acids 2022-06, Vol.54 (6), p.859-875
Main Authors: Bao, Zhonglei, Liu, Jianghua, Fu, Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human microtubule-associated protein Tau (τ) is abundant in the axons of neurons where it stabilizes microtubule bundles; abnormally hyperphosphorylated τ is a hallmark of Alzheimer’s disease (AD) and related tauopathies. The hyperphosphorylation events can be recognized by phosphotyrosine-recognition domain SH2 (Src homology 2) to elicit downstream τ signaling in AD pathology. In this study, a comprehensive binary interaction map (CBIM) of all the 6 τ phosphotyrosine sites with 120 SH2 domains in the human genome was systematically created at structural level using computational analyses and binding assays, from which we were able to identify those of strong and moderate binding pairs of sites to domains. It is found that the SH2-recognition specificity of different τ phosphotyrosine sites has been evolutionally optimized to become roughly orthogonal to each other, and thus these site phosphorylations would regulate different but probably partially overlapped biological functions in τ signaling. Some SH2 groups such as SRC, RIN, PLCG, SOCS and SH2D were revealed to have effective binding potency as compared to others; they could be regarded as potential τ-associated proteins to transduce the downstream signaling. We further determined the systematic binding affinities of 6 τ-phosphopeptides to the 11 SH2 domains in SRC group, from which the FYN-τ 18 and YES-τ 29 pairs were identified as strong binders. Subsequently, rational molecular design was performed on τ 18 and τ 29 to derive a number of τ-phosphopeptide mutants with increased affinity; they are self-inhibitory candidates to competitively target τ hyperphosphorylation events in AD. In addition, it is revealed that the primary anchor pY 0 and secondary anchor X +3 of τ-phosphopeptides play an important role in SRC-group SH2 recognition, which confer stability and specificity to the SH2–phosphopeptide binding, respectively.
ISSN:0939-4451
1438-2199
DOI:10.1007/s00726-022-03171-3