Loading…
The Effect of Instance-Space Partition on Significance
This paper demonstrates experimentally that concluding which induction algorithm is more accurate based on the results from one partition of the instances into the cross-validation folds may lead to statistically erroneous conclusions. Comparing two decision tree induction and one naive-bayes induct...
Saved in:
Published in: | Machine learning 2001-03, Vol.42 (3), p.269-286 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper demonstrates experimentally that concluding which induction algorithm is more accurate based on the results from one partition of the instances into the cross-validation folds may lead to statistically erroneous conclusions. Comparing two decision tree induction and one naive-bayes induction algorithms, we find situations in which one algorithm is judged more accurate at the p = 0.05 level with one partition of the training instances but the other algorithm is judged more accurate at the p = 0.05 level with an alternate partition. We recommend a new significance procedure that involves performing cross-validation using multiple instance-space partitions. Significance is determined by applying the paired Student t-test separately to the results from each cross-validation partition, averaging their values, and converting this averaged value into a significance value.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0885-6125 1573-0565 |
DOI: | 10.1023/A:1007613918580 |