Loading…

A framework for low complexity static learning

In this paper, we present a new data structure for a complete implication graph and two techniques for low complexity static learning. We show that using static indirect /spl and/-implications and super gate extraction some hard-to-detect static and dynamic indirect implications are easily derived d...

Full description

Saved in:
Bibliographic Details
Main Authors: Gizdarski, E., Fujiwara, H.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we present a new data structure for a complete implication graph and two techniques for low complexity static learning. We show that using static indirect /spl and/-implications and super gate extraction some hard-to-detect static and dynamic indirect implications are easily derived during static and dynamic learning as well as branch and bound search. Experimental results demonstrated the effectiveness of the proposed data structure and learning techniques.
ISSN:0738-100X
DOI:10.1109/DAC.2001.156199