Loading…
Stability criteria for feedback-controlled, imperfectly known, bilinear systems with time-varying delay
The problem of synthesizing a class of continuous, memoryless feedback controls in order to stabilize a class of imperfectly known homogeneous-in-the-state bilinear time-delay systems is considered. In particular, bilinear systems with state time-delay in the linear term are investigated. The time-d...
Saved in:
Published in: | Mathematics and computers in simulation 1998-02, Vol.45 (3), p.279-289 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The problem of synthesizing a class of continuous, memoryless feedback controls in order to stabilize a class of imperfectly known homogeneous-in-the-state bilinear time-delay systems is considered. In particular, bilinear systems with state time-delay in the linear term are investigated. The time-delay is assumed to be an unknown time-varying function with known upper bound on its derivative. As well as considering both matched and residual uncertainty, the uncertainty in the class of systems can be state, delayed-state and input dependent, and time-varying. Prior information on the bound of the system uncertainty is required; such bounding information allows for quadratic growth with respect to the state. For this stabilizability problem, a stability criterion, involving the upper bound on the derivative of the time-varying time-delay is obtained. |
---|---|
ISSN: | 0378-4754 1872-7166 |
DOI: | 10.1016/S0378-4754(97)00107-9 |