Loading…

Structural investigation of Ba6−3xLn8+2xTi18O54 (x = 0.27, Ln = Sm) by single crystal x-ray diffraction in space group Pnma(No. 62)

Single crystals of barium samarium titanium oxide Ba6−3xSm8+2xTi18O54 (x = 0.27) have been synthesized and studied using x-ray diffraction. Superstructure reflections, which cause a doubling of the cell along the short axis, were taken into account and the refinement was conducted in the orthorhombi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 1998-01, Vol.13 (1), p.187-196
Main Authors: Rawn, C. J., Birnie, D. P., Bruck, M. A., Enemark, J. H., Roth, R. S.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Single crystals of barium samarium titanium oxide Ba6−3xSm8+2xTi18O54 (x = 0.27) have been synthesized and studied using x-ray diffraction. Superstructure reflections, which cause a doubling of the cell along the short axis, were taken into account and the refinement was conducted in the orthorhombic space group Pnma. Unit cell parameters from single crystal x-ray diffraction were a = 22.289(1), b = 7.642(1), and c = 12.133(1) Å. Refinement on F resulted in R1 = 5.37% for 1410 Fo > 4σ with the thermal parameters of the Sm and Ba atoms refined anisotropically and the thermal parameters of the Ti and O atoms refined isotropically. The structure is made up of a network of corner sharing TiO6−2 octahedra creating rhombic (perovskite-like) and pentagonal channels. The two pentagonal channels are fully occupied by Ba atoms. The refinement suggests that one rhombic channel is fully occupied by Sm atoms (Sm3/Sm4), one rhombic channel is partially occupied by Sm atoms (100% Sm1/86.25% Sm5), and one rhombic channel is shared by BaySm atoms (59.25% Ba3/40.75% Sm2), resulting in a formula of Ba10.38Sm17.08Ti36O108 with Z = 1. The above site occupancies differ from the site occupancies previously reported in the literature for refinements conducted with the short axis approximately equal to 3.8 Å.
ISSN:0884-2914
2044-5326
DOI:10.1557/JMR.1998.0025