Loading…

Amyloids Formed by Nonaromatic Amino Acid Methionine and Its Cross with Phenylalanine Significantly Affects Phospholipid Vesicle Membrane: An Insight into Hypermethioninemia Disorder

The incorrect metabolic breakdown of the nonaromatic amino acid methionine (Met) leads to the disorder called hypermethioninemia via an unknown mechanism. To understand the molecular level pathogenesis of this disorder, we prepared a DMPC lipid membrane, the mimicking setup of the cell membrane, and...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2022-07, Vol.38 (27), p.8252-8265
Main Authors: Nandi, Sourav, Mukhopadhyay, Anurup, Nandi, Pratyush Kiran, Bera, Nanigopal, Hazra, Ritwik, Chatterjee, Jyotirmoy, Sarkar, Nilmoni
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The incorrect metabolic breakdown of the nonaromatic amino acid methionine (Met) leads to the disorder called hypermethioninemia via an unknown mechanism. To understand the molecular level pathogenesis of this disorder, we prepared a DMPC lipid membrane, the mimicking setup of the cell membrane, and explored the effect of the millimolar level of Met on it. We found that Met forms toxic fibrillar aggregates that disrupt the rigidity of the membrane bilayer, and increases the dynamic response of water molecules surrounding the membrane as well as the heterogeneity of the membrane. Such aggregates strongly deform red blood cells. This opens the requirement to consider therapeutic antagonists either to resist or to inhibit the toxic amyloid aggregates against hypermethioninemia. Moreover, such disrupting effect on membrane bilayer and cytotoxicity along with deformation effect on RBC by the cross amyloids of Met and Phenylalanine (Phe) was found to be most virulent. This exclusive observation of the enhanced virulent effect of the cross amyloids is expected to be an informative asset to explain the coexistence of two amyloid disorders.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.2c00648