Loading…

Sustainable Mitigation of Paracetamol with a Novel Dual-Functionalized Pullulan/Kaolin Hydrogel Nanocomposite from Simulated Wastewater

In the present investigation, a novel, green, and economical dual-functionalized pullulan/kaolin hydrogel nanocomposite (f-PKHN) was fabricated and subsequently applied for the liquid-phase decontamination of paracetamol (PCT), a pharmaceutical pollutant. Pullulan and kaolin were functionalized with...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2022-07, Vol.38 (27), p.8280-8295
Main Authors: Khan, Suhail Ayoub, Abbasi, Neha, Hussain, Daud, Khan, Tabrez Alam
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present investigation, a novel, green, and economical dual-functionalized pullulan/kaolin hydrogel nanocomposite (f-PKHN) was fabricated and subsequently applied for the liquid-phase decontamination of paracetamol (PCT), a pharmaceutical pollutant. Pullulan and kaolin were functionalized with l-asparagine and gallic acid, respectively. The physicochemical facets of the functionalized pullulan/kaolin hydrogel nanocomposite and its interactive behavior with PCT were elucidated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and elemental mapping. The process parameters along with the isotherm, kinetics, and thermodynamics were methodically appraised via a batch technique to unveil the adsorption performance of the as-fabricated hydrogel nanocomposite. The adsorption isotherm and kinetics of PCT uptake by f-PKHN conform well to Freundlich and pseudo-second-order models, respectively. Relying on hydrogen bonding, n−π, and van der Waals interactions, the maximum adsorption capacity was 332.54 mg g–1, higher than for most of the previous adsorbents reported in the literature for PCT removal. Thermodynamic calculations corroborated endothermic, spontaneous, and feasible adsorption phenomena. The maintenance of a high uptake percentage (69.11%) in the fifth consecutive adsorption–desorption cycle implied the significant reusable potential of f-PKHN. Swelling studies exhibited 90% swelling within 200 min, indicating the successful fabrication of a cross-linked hydrogel network. The real water (distilled water, tap water, and river water) samples spiked with PCT specified a significant uptake of PCT (>85%), and the minor influence of ionic strength on the adsorptive potential of f-PKHN validated its potentiality for the decontamination of real effluents. In conclusion, f-PKHN with substantial adsorption capacity, green characteristics, and excellent reusability can be reckoned with as a promising adsorbent for the de-escalation of PCT from aquatic sources as well as at the industrial level.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.2c00702