Loading…
On the Time-Space Complexity of Geometric Elimination Procedures
In [25] and [22] a new algorithmic concept was introduced for the symbolic solution of a zero dimensional complete intersection polynomial equation system satisfying a certain generic smoothness condition. The main innovative point of this algorithmic concept consists in the introduction of a new ge...
Saved in:
Published in: | Applicable algebra in engineering, communication and computing communication and computing, 2001, Vol.11 (4), p.239-296 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In [25] and [22] a new algorithmic concept was introduced for the symbolic solution of a zero dimensional complete intersection polynomial equation system satisfying a certain generic smoothness condition. The main innovative point of this algorithmic concept consists in the introduction of a new geometric invariant, called the degree of the input system, and the proof that the most common elimination problems have time complexity which is polynomial in this degree and the length of the input. In this paper we apply this algorithmic concept in order to exhibit an elimination procedure whose space complexity is only quadratic and its time complexity is only cubic in the degree of the input system. |
---|---|
ISSN: | 0938-1279 1432-0622 |
DOI: | 10.1007/s002000000046 |