Loading…

A nonlinear numerical model for sloped-bottom tuned liquid dampers

Shaking‐table data for a tuned liquid damper with a sloped bottom of 30° with the horizontal are investigated using a non‐linear numerical model previously developed by Yu, Jin‐kyu, Nonlinear characteristics of tuned liquid dampers. Ph.D. Thesis, Department of Civil Engineering, University of Washin...

Full description

Saved in:
Bibliographic Details
Published in:Earthquake engineering & structural dynamics 2001-05, Vol.30 (5), p.731-743
Main Authors: Olson, D. E., Reed, D. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Shaking‐table data for a tuned liquid damper with a sloped bottom of 30° with the horizontal are investigated using a non‐linear numerical model previously developed by Yu, Jin‐kyu, Nonlinear characteristics of tuned liquid dampers. Ph.D. Thesis, Department of Civil Engineering, University of Washington, Seattle, WA, 98195 (1997). Stiffness and damping parameters for this model are obtained and compared with those previously derived for box‐shaped tanks. The values for these parameters reflect the softening spring behaviour of the sloped‐bottom system in contrast to the hardening system evident for the box‐shaped TLD. Consequently, the sloped‐bottom tank should be tuned slightly higher than the fundamental structural frequency in order to obtain the most effective damping. Copyright © 2001 John Wiley & Sons, Ltd.
ISSN:0098-8847
1096-9845
DOI:10.1002/eqe.34