Loading…

Spectroscopic and Molecular Dynamics Aspect of Antimalarial Drug Hydroxychloroquine Binding with Human Telomeric G‑Quadruplex

Hydroxychloroquine (HCQ) is an important drug that is in the trial stage for different types of cancer diseases; however, insight about the mechanism of its action is almost unknown. G-quadruplex (Gq) has been considered one of the potential targets for the cure of cancer; hence, it is essential to...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2022-07, Vol.126 (28), p.5241-5249
Main Authors: Sarkar, Sunipa, Bisoi, Asim, Singh, Prashant Chandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydroxychloroquine (HCQ) is an important drug that is in the trial stage for different types of cancer diseases; however, insight about the mechanism of its action is almost unknown. G-quadruplex (Gq) has been considered one of the potential targets for the cure of cancer; hence, it is essential to understand the possibility of the binding of HCQ with Gq to get a better understanding of its action. In this study, the molecular insight into the possibility of the binding of HCQ with different topological forms of Gq of the human telomere (htel) has been investigated using spectroscopic, thermochemical, and molecular dynamics simulation techniques. The spectroscopic and thermochemical studies clearly suggest that HCQ has a topological preference in the binding with htel in the form of a hybrid structure rather than the antiparallel form and the binding of HCQ stabilizes preferably to the hybrid form. The molecular dynamics simulation study suggests that the interaction of HCQ in the groove and loop regions of the hybrid structure is more stable compared to the antiparallel form, which is the probable reason for the topological preference of HCQ. This study depicts that HCQ has a topological preference in the binding and stabilization of the Gq of htel, which makes it potentially an important drug for targeting the telomere region associated with cancer disease.
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.2c03267