Loading…
Methyl Substitution Destabilizes Alkyl Radicals
We have quantum chemically investigated how methyl substituents affect the stability of alkyl radicals MemH3−mC⋅ and the corresponding MemH3−mC−X bonds (X = H, CH3, OH; m = 0 – 3) using density functional theory at M06‐2X/TZ2P. The state‐of‐the‐art in physical organic chemistry is that alkyl radical...
Saved in:
Published in: | Angewandte Chemie International Edition 2022-09, Vol.61 (36), p.e202207477-n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have quantum chemically investigated how methyl substituents affect the stability of alkyl radicals MemH3−mC⋅ and the corresponding MemH3−mC−X bonds (X = H, CH3, OH; m = 0 – 3) using density functional theory at M06‐2X/TZ2P. The state‐of‐the‐art in physical organic chemistry is that alkyl radicals are stabilized upon an increase in their degree of substitution from methyl |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202207477 |