Loading…

Predicting the Likelihood of Colorectal Cancer with Artificial Intelligence Tools Using Fourier Transform Infrared Signals Obtained from Tumor Samples

The early and accurate detection of colorectal cancer (CRC) significantly affects its prognosis and clinical management. However, current standard diagnostic procedures for CRC often lack sensitivity and specificity since most rely on visual examination. Hence, there is a need to develop more accura...

Full description

Saved in:
Bibliographic Details
Published in:Applied spectroscopy 2022-12, Vol.76 (12), p.1412-1428
Main Authors: Villamanca, John Jerald, Hermogino, Lemuel John, Ong, Katherine Denise, Paguia, Brian, Abanilla, Lorenzo, Lim, Antonio, Angeles, Lara Mae, Espiritu, Bernadette, Isais, Maura, Tomas, Rock Christian, Albano, Pia Marie
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The early and accurate detection of colorectal cancer (CRC) significantly affects its prognosis and clinical management. However, current standard diagnostic procedures for CRC often lack sensitivity and specificity since most rely on visual examination. Hence, there is a need to develop more accurate methods for its diagnosis. Support vector machine (SVM) and feedforward neural network (FNN) models were designed using the Fourier transform infrared (FT-IR) spectral data of several colorectal tissues that were unanimously identified as either benign or malignant by different unrelated pathologists. The set of samples in which the pathologists had discordant readings were then analyzed using the AI models described above. Between the SVM and NN models, the NN model was able to outperform the SVM model based on their prediction confidence scores. Using the spectral data of the concordant samples as training set, the FNN was able to predict the histologically diagnosed malignant tissues (n = 118) at 59.9–99.9% confidence (average = 93.5%). Of the 118 samples, 84 (71.18%) were classified with an above average confidence score, 34 (28.81%) classified below the average confidence score, and none was misclassified. Moreover, it was able to correctly identify the histologically confirmed benign samples (n = 83) at 51.5–99.7% confidence (average = 91.64%). Of the 83 samples, 60 (72.29%) were classified with an above average confidence score, 22 (26.51%) classified below the average confidence score, and only 1 sample (1.20%) was misclassified. The study provides additional proof of the ability of attenuated total reflection (ATR) FT-IR enhanced by AI tools to predict the likelihood of CRC without dependence on morphological changes in tissues. Graphical Abstract
ISSN:0003-7028
1943-3530
DOI:10.1177/00037028221116083