Loading…

Polarization preservation in diffusive scattering from in vivo turbid biological media: effects of tissue optical absorption in the exact backscattering direction

There is considerable recent interest in using polarized light to investigate turbid biological media. Although tissue multiple scattering randomizes incident polarization states, there are circumstances when appreciable degree of polarization can be observed in diffusive scattering. In this study,...

Full description

Saved in:
Bibliographic Details
Published in:Optics communications 2001-04, Vol.190 (1), p.37-43
Main Authors: Vitkin, I.Alex, Studinski, Ryan C.N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There is considerable recent interest in using polarized light to investigate turbid biological media. Although tissue multiple scattering randomizes incident polarization states, there are circumstances when appreciable degree of polarization can be observed in diffusive scattering. In this study, we use polarization modulation and synchronous detection to examine in the exact backscattering direction the polarization properties of diffusely reflected visible light from hands of human volunteers of varying pigmentation levels. The surviving polarization fraction increases with increasing pigmentation, likely due to preferential loss of highly scattered, long-pathlength photons; this mechanism lowers the average pathlength traversed by the detected light and hence increases the measured polarization preservation. This behavior is contrasted with the overall diffuse reflectance intensity, whose magnitude decreases with increasing absorption. These experiments demonstrate the important influences of medium optical properties on the polarization characteristics of multiply scattered light, which must be further investigated to enable quantitative polarization evaluation of turbid media such as biological tissues.
ISSN:0030-4018
1873-0310
DOI:10.1016/S0030-4018(01)01080-X